- 摘要
近日,“典赞$\cdot$2022科普中国”揭晓盛典特别节目在中央广播电视总台综合频道CCTV-1播出,现场揭晓2022年度十大科普人物、十大科普作品、十大科普事件和十大科学辟谣榜。我院袁亚湘院士入选2022年度十大科普人物。
多年来,袁亚湘院士热心数学科普工作,身体力行,用通俗简明的语言、生动有趣的案例向社会公众普及数学知识,为多所中小学、大学做了多场科普讲座,产生了良好的社会反响。另外,他还开展了“好玩的数学”等科普讲座,编辑出版《跨越时空的数学家》等科普著作。
袁亚湘,中国科学院数学与系统科学研究院研究员,现为中国科学院院士、发展中国家科学院院士、巴西科学院通讯院士,美国工业与应用数学会会士、美国数学学会首届会士。曾任中国数学会理事长,现任国际工业与应用数学联合会主席、全国政协常委、中国科协副主席。长期从事运筹学研究并取得了系统成果,在信赖域法、拟牛顿法、非线性共轭梯度法等方法方面做出了重要贡献,在信赖域法算法设计和收敛性分析方面所做的工作是开创性的,在拟牛顿方法的理论研究方面,他和美国科学家合作证明了一类拟牛顿方法的全局收敛性,这是非线性规划算法理论在80年代最重要的成果之一。他和戴彧虹合作提出的“戴--袁方法”被认为是非线性共轭梯度法四个主要方法之一。他还首创性地提出了用信赖域方法和传统的线搜索方法的结合来构造新的计算方法,开创了利用非二次模型信息构造二次模型子问题的方法,提出了非拟牛顿方法。
“典赞$\cdot$科普中国”是由中国科协牵头主办的一项评选年度科普典型的活动盛事,创始于2015年,到今年已经连续举办八届,通过盘点年度科普的人物、作品、事件和谣言,在促进全民科学素质提升等方面发挥了积极作用,已成为科普领域影响力最大、最具权威性的品牌活动之一。
- 摘要
2023年3月24-26日,由中国工业与应用数学学会(CSIAM)女性应用数学工作者委员会(以下简称“女工委”)主办,武汉大学承办的2023年“应用数学研究与发展”研讨会暨CSIAM女性应用数学工作者委员会工作会议在武汉大学珞珈山庄以线上线下相结合的方式顺利召开。学会理事长、武汉大学校长张平文院士,学会副理事长宣晓华博士,女工委委员,CSIAM2022年度青年女性应用数学支持研究项目负责人等近二十名专家学者出席了线下会议。
张平文院士首先致开幕辞,他对各位专家学者的到来表示热烈欢迎。他指出,女性科技人才是科技人才队伍的重要组成部分,是我国科技创新发展的一支关键性力量,一大批女性科技人才在各类科技领域展示了非凡的创造力和影响力。他肯定了女工委成立以来所做的各项工作,指出学会可以向有关部门提出政策建议,为女性应用数学工作者开展科学研究提供更多支持。他表示,学会将一如既往地大力支持女性应用数学工作者的队伍建设和全面发展,希望女工委在未来发展得越来越好。湖北省工业与应用数学学会理事长、武汉大学杨志坚教授作为承办单位代表,表示很高兴为大家提供学术交流沟通的平台,希望以后有机会为女性应用数学工作做出更多贡献。国家自然科学基金委员会数学处处长赵桂萍研究员,同时作为女工委副主任,表示希望通过此次会议进行充分的沟通交流,碰撞思维火花,将学会的女性活动越办越好。会议开幕式由学会副理事长、女工委主任闫桂英研究员主持。
在应用数学研究与发展研讨会环节,获得CSIAM2022年度青年女性应用数学支持研究项目资助的4位青年女性学者——辽宁大学白洁博士、北京工业大学马晨瑾博士、南昌大学肖岚博士和哈尔滨工业大学姚文娟博士,分别做题为《奥密克戎疫情传播及防控动力学建模与经济学评估研究》、《疾病流行病学数据的时空动态分析》、《关于竞赛图的强t-泛连通性和超竞赛图弧(反)泛圈性的研究》和《图像超分辨率重建方法研究》的项目进展报告,她们各自介绍和分享了自己当前的研究情况、取得的成果进展以及下阶段的研究计划。与会专家对4位青年女性学者的报告分别做了点评,从研究内容、报告框架、存在问题等各方面都提出了一些建议;并就4位青年女性学者提出的问题和当前应用数学研究与发展进行了深入的交流和探讨,与会专家还分享了自己的研究经验和心得体会,为她们在应用数学领域科学研究与教育教学的发展提供了有益的借鉴和启示。女工委秘书长袁健华教授主持了项目进展报告与点评环节。
会议还讨论了女工委的2023年工作计划和相关工作事项,该部分议程由学会副理事长、女工委副主任汤华中教授主持。他首先通报了2022年度导师计划学者的跟踪回访情况,主要包括学者们反馈的困难或问题、提出的意见或建议。随后他和其他与会人员围绕相关议题展开了讨论,就如何更好地支持应用数学领域女性科技工作者的成长、提高女性在应用数学领域的参与度等问题进行了深入探讨;大家还初步沟通了2023年女工委的工作计划,下阶段将继续开展多种形式的活动,如组织2023年度青年女性应用数学支持研究项目的申报与评审、开展“魅丽数学”学术论坛、举办“魅丽数学进校园”科普活动等,为女性应用数学工作者的成长和发展提供更多的机会和平台,通过多种渠道宣传女性在数学领域的成就和贡献,激发更多女性从事数学研究的兴趣和热情,从而为应用数学领域的繁荣和发展贡献更多力量。
学会副理事长宣晓华博士基于自己公司的实际情况,围绕女性拥有学习力、沟通力、领导力等特质,指出女性在应用数学领域的发展大有可为,表示很愿意跟更多的女数学家开展更多产业合作。
最后,女工委主任委员闫桂英研究员在总结中发言指出,当前女性应用数学工作还有非常多的事情要做,非常远的路要走,非常感谢各界的支持与帮助,也希望与大家一道齐心协力,共同推进学会女性应用数学工作迈上新台阶。
本次会议的成功举办,充分体现了CSIAM女工委对应用数学领域发展和女性应用数学工作者成长的关注和支持。此次会议不仅加强了应用数学科技工作者之间的联系和交流,同时也为进一步推动国内女性应用数学工作者的成长和发展提供了新的思路和方法。
学会女性应用数学工作者委员会供稿
- 摘要
The EASIAM (East Asia section of SIAM, http://www.easiam.org/home.html) Student Paper Prizes are awarded every year to the student author(s) of the most outstanding paper(s) submitted to the EASIAM Student Paper Prize competition. This prize is solely based on the merit and content of the student's contribution to the submitted paper. The purpose of the Student Paper Prizes is to recognize outstanding scholarship by students in applied mathematics or scientific computing. Each recipient of the EASIAM Student Paper Prize shall receive a framed certificate and a cash prize of US$300. Normally, up to three awards will be bestowed every year.
Eligibility
For this round of competition, the applicant must be a Ph.D student or a recent Ph.D graduate (within one year of his/her thesis defense on the application deadline) in universities of East or Southeast Asia.
Requirements
To enter the competition, each applicant must submit:
(1) A short vitae including her/his list of publications
(2) A complete paper
(3) A recommendation letter from the student's adviser that describes and evaluates the paper's contribution to the literature and the student's role in the publication.
Submission
The deadline of submissions is scheduled to June 30, 2023. The applicant should send the above documents (1) and (2) herself/himself, and ask her/his adviser to send the letter (3). All the documents should be sent to Dr. Tao Zhou (Chinese Academy of Sciences).
Email: tzhou@lsec.cc.ac.cn.
- 摘要
We are pleased to announce that registration is now open for the Maths4DL Deep Learning for Computational Physics Conference, taking place at University College London, from 4 to 6 July 2023.
Deep learning in physics represents a very active and rapidly growing field of research. This shift in approach has already brought with it many advances, which this conference aims to highlight. Recent examples include PINNs, SINDy, symbolic regression, Fourier neural operators, meta-learning, and neural ODEs to name a few. The applications also embrace many disciplines across the scientific spectrum, from medical sciences, to computer vision, to the physical sciences. We believe that the next steps for machine learning require a firm theoretical understanding and this conference will bring together like-minded individuals to discuss current and future research in this area.
Confirmed keynote speakers:
- Prof. Giovanni Alberti, University of Genoa
- Dr Steve Brunton, University of Washington
- Prof. Elena Celledoni, Norwegian University of Science and Technology (NTNU)
- Asst. Prof. Sophie Langer, University of Twente
- Dr Chris Rackauckas, Massachusetts Institute of Technology (MIT)
More information can be found on the conference webpage
https://maths4dl.com/newsevents/conference-on-deep-learning-for-computational-physics/
m.stynes@csrc.ac.cn
- 摘要
The 7th Conference on Numerical Methods for Fractional-Derivative Problems will be held at Beijing Computational Science Research Center during 27-29 July. The conference talks each day will be held between 08:30-17:30 approximately. Talks will be given in Chinese or English, according to the speaker's preference.
For a list of confirmed speakers and full details regarding the conference, see the website
https://www.csrc.ac.cn/en/event/workshop/2023-03-17/115.html
The registration deadline is 14 July. Registration at the conference website is now open.
A few slots are still open for contributed talks; if you wish to submit a talk, then email your title and abstract (not more than 1 page) to wangsining@csrc.ac.cn as soon as possible.
Organisers:
Martin Stynes, Beijing CSRC
Yongtao Zhou, Qingdao University of Technology
- 摘要
1. 授课专家 Instructor
郑方阳教授 (重庆师范大学)
2. 短课程介绍 Introduction
短课程: 复几何简介
摘要:复几何的主要研究对象为复流形,人们希望了解这类空间的几何、拓扑、函数论性质。复几何的主要研究方法分为两大类:代数方法(代数几何)与解析方法(复微分几何,多复变函数论)。在本课程中,我们将讨论几类典型的复流形。特别地,在介绍代数流形和凯勒流形的经典性质之后,我们重点讨论几类非凯勒流形及其上的微分几何学研究。
参考文献:
1. S-S Chern: Complex manifolds without potential theory.
2. R.O. Wells: Differential Analysis on Complex Manifolds.
3. A. Moroianu: Lecture on Kahler Geometry, https://moroianu.perso.math.cnrs.fr/tex/kg.pdf
4. D. Huybrechts: Complex Geometry, an introduction
5. F. Zheng: Complex Differential Geometry.
3. 授课时间与内容 Schedule and Summary of Topics
4月3日(周一) 10-11:30 AM
Lecture 1: Complex manifolds: basic results
4月6日(周四) 10-11:30 AM
Lecture 2: Kahler manifolds and projective manifolds
4月10日(周一) 10-11:30 AM
Lecture 3: Hermitian manifolds, part 1
4月13日(周四) 10-11:30 AM
Lecture 4: Hermitian manifolds, part 2
4月13日(周四) 2:30-4 PM
Lecture 5: Recent developments on Hermitian geometry
4. 授课地点 Course Link:
腾讯会议号:43086337368 (密码:0423)
5. 联系人 Contact
杨波, boyang@xmu.edu.cn
叶老师,0592-2580036,tymath2@xmu.edu.cn
- 摘要
Benchmark Computations of the Phase Field Crystal and Functionalized Cahn-Hilliard Equations via Fully Implicit, Nesterov Accelerated Schemes
Jea-Hyun Park, Abner J. Salgado & Steven M. Wise
Numerical Study on Viscous Fingering Using Electric Fields in a Hele-Shaw Cell
Meng Zhao, Pedro Anjos, John Lowengrub, Wenjun Ying & Shuwang Li
Quantum Implementation of Numerical Methods for Convection-Diffusion Equations: Toward Computational Fluid Dynamics
Bofeng Liu, Lixing Zhu, Zixuan Yang & Guowei He
A One-Dimensional Second-Order Cell-Centered Lagrangian Scheme Satisfying the Entropy Condition
Zhong-Ze Li, Li Liu & Jun-Bo Cheng
A Stable Arbitrarily High Order Time-Stepping Method for Thermal Phase Change Problems
Weiwen Wang & Chuanju Xu
A Posteriori Error Estimate of Weak Galerkin FEM for Stokes Problem Using Auxiliary Subspace Techniques
Jiachuan Zhang, Ran Zhang & Xiaoshen Wang
SDF-Based ILW: Inverse Lax-Wendroff Method with the Signed Distance Function Representation of the Geometric Boundary
Cheng Peng, Shihao Liu & Zhouwang Yang
Weak Galerkin Method for Second-Order Elliptic Equations with Newton Boundary Condition
Mingze Qin, Ruishu Wang, Qilong Zhai & Ran Zhang
Convergence of Physics-Informed Neural Networks Applied to Linear Second-Order Elliptic Interface Problems
Sidi Wu, Aiqing Zhu, Yifa Tang & Benzhuo Lu
Band Structure Calculations of Dispersive Photonic Crystals in 3D Using Holomorphic Operator Functions
Wenqiang Xiao, Bo Gong, Junshan Lin & Jiguang Sun
- 摘要
Optimal Error Estimates of the Semi-Discrete Local Discontinuous Galerkin Method and Exponential Time Differencing Schemes for the Thin Film Epitaxy Problem Without Slope Selection
Danni Zhang & Ruihan Guo
A Priori Error Estimates for Spectral Galerkin Approximations of Integral State-Constrained Fractional Optimal Control Problems
Juan Zhang, Jiabin Song & Huanzhen Chen
A Conservative SAV-RRK Finite Element Method for the Nonlinear Schrödinger Equation
Jun Yang & Nianyu Yi
Unconditional Superconvergence Analysis of Energy Conserving Finite Element Methods for the Nonlinear Coupled Klein-Gordon Equations
Ming Cui, Yanfei Li & Changhui Yao
A Two-Dimensional Thermoelastic Analysis of a Cylindrical Shell Made of FGM with Temperature-Dependent Physical Properties
Hamed Panahi-Kalus, Amin Moosaie & Mehrdad Ahmadinejad
Convergence and Stability of an Explicit Method for Autonomous Time-Changed Stochastic Differential Equations with Super-Linear Coefficients
Xiaotong Li, Juan Liao, Wei Liu & Zhuo Xing
Coiflet Wavelet-Homotopy Solutions to Bio-Thermal Convection in a Square Cavity
Sohail Ahmed, Hang Xu & Qiang Sun
An SAV Method for Imaginary Time Gradient Flow Model in Density Functional Theory
Ting Wang, Jie Zhou & Guanghui Hu
Sinc-Multistep Schemes for Forward Backward Stochastic Differential Equations
Xu Wang & Weidong Zhao
Parallel Domain Decomposition-Based Solver for the Simulation of Flow over an Ahmed Reference Model
Zhengzheng Yan, Rongliang Chen, Chao Wang, Lei Xu & Jingzhi Li
A New Framework of Convergence Analysis for Solving the General Nonlinear Schrödinger Equation Using the Fourier Pseudo-Spectral Method in Two Dimensions
Jialing Wang, Tingchun Wang & Yushun Wang
Unified Solution of Conjugate Fluid and Solid Heat Transfer–Part I. Solid Heat Conduction
Shujie Li & Lili Ju
- 摘要
A Brief Survey on the Approximation Theory for Sequence Modelling
Haotian Jiang, Qianxiao Li, Zhong Li & Shida Wang
Interpolating Between BSDEs and PINNs: Deep Learning for Elliptic and Parabolic Boundary Value Problems
Nikolas Nüsken & Lorenz Richter
Batch Normalization Preconditioning for Stochastic Gradient Langevin Dynamics
Susanna Lange, Wei Deng, Qiang Ye & Guang Lin
Authorization Required
This server could not verify that you are authorized to access the document requested. Either you supplied the wrong credentials (e.g., bad password), or your browser doesn't understand how to supply the credentials required.