- 摘要
2023年1月6日,2022年度中国工业与应用数学学会(以下简称“学会”)专业委员会工作会议在线上召开。学会理事长张平文院士、秘书长张波研究员、专业委员会管理与地方学会联络委员会(以下简称“管理委员会”)委员、各专业委员会负责人出席本次会议。学会副理事长、管理委员会主任黄云清教授主持本次工作会议。
学会理事长张平文院士首先致辞。他代表学会感谢了各专业委员会长久以来的付出与努力,对各专业委员会能克服疫情影响仍保持很强的学术活跃度表达了高度的称赞。他指出,今年将要在日本召开的ICIAM 2023大会是学会及各专业委员会扩大国际学术影响力的难得契机,他鼓励各专业委员会可以借助这次盛会多多发出中国声音。随着国内应用数学的发展进入一个崭新的时代,他建议各专业委员会可以在推动应用数学的落地、学科的交叉、基础算法的研究等方面抓住机会,寻求更加长足的进步。此外,他希望专业委员会在得到极大发展的同时,也要兼顾加强自身建设,积极思考和推进工作的专职化与专业度。最后,理事长给所有与会人员送出了新春祝福,对学会、专业委员会、应用数学未来的繁荣发展表达了美好的祝愿。
接下来,进入专业委员会汇报阶段,筹备中的1个专业委员会和已正式成立的21个专业委员会依次作了年度工作总结。每个专业委员会都从组织架构、学术活动开展情况、科普活动开展情况等方面进行了汇报,并提出了2023年的总体工作计划。管理委员会在听取各专业委员会工作汇报的同时,对其年度工作开展情况进行了现场提问与评估打分。
所有专业委员会汇报完毕后,学会副理事长黄云清教授作了总结发言。他肯定了各专业委员会近些年在管理规范化方面做出的努力与巨大进步,对各专业委员会负责人所做的贡献表示了由衷的感谢。他指出,许多专业委员会能够跟据自身情况与学科特点开展特色活动,尤其是各类研讨会和科普活动丰富多彩、形式多样,值得相互学习、继续发扬。随着国家疫情防控战略的进一步放开,他鼓励各专业委员会在疫情平稳的前提下,未来可以多尝试组织线下活动,以营造更好的学术交流氛围,取得更好的学术活动效果。最后,黄教授希望各专业委员会应避免盲目扩张,要逐步重视起发展的质量,提高会员的凝聚力,同时加强专业委员会横向之间的交流合作、联合攻关,引导会员开展有组织的科研,力争理论研究与解决实际问题齐头并进,助力更多的应用数学成果落地。
本次会议的最后,管理委员会进行了合议。合议环节中,管理委员会委员们就本次汇报中出现的共性问题展开了讨论,研究了工作中遇到的若干问题,同时结合本年度的汇报情况对今后的考核标准进行了讨论与优化。
本次工作会议对2022年度各专业委员会所做的工作进行了评估考核,并对工作中遇到的问题进行了针对性研究。通过本次会议,各专业委员会也得以相互学习、交流经验、取长补短,对专业委员会的良性发展、加强合作具有重要意义。2022年是新冠病毒传播以来形势最为严峻的一年,全国各地封控不断,对举办学术活动造成了巨大影响,但各专业委员会克服了各种困难,通过灵活的形式依旧保持了很高的学术活跃度,难能可贵;2022年也是新冠病毒传播的转折之年,相信在已经到来的2023年,各专业委员会所举办的活动效果及自身的发展建设都将向前再迈进一大步。
学会专业委员会管理与地方学会联络委员会供稿
- 摘要
为鼓励更多的科研项目成果转化落地,促进应用数学及相关工业发展,中国工业与应用数学学会自2021年起评选认证CSIAM应用数学落地成果,历年已获得认证的落地成果名单请见
https://www.csiam.org.cn/home/article/detail/id/1456.html。
详情请见网站:http://csiam.math2industry.org.cn/amat/。
2023年CSIAM应用数学落地成果征集工作现已启动。
一、申请认证项目应具备以下资格:
1、科研项目成果转化落地;
2、主要成果在中国完成。
二、认证采用推荐制度,由以下两种方式推荐产生:
1、个人推荐需符合下列条件之一(须两位推荐人):
(1)中国科学院或中国工程院院士;
(2)国内有重大影响力(中国500强)企业负责研发创新合作的副总裁及以上职位;
(3)CSIAM会士、CSIAM常务理事、CSIAM专业委员会主任;
(4)省级工业与应用数学学会理事长。
2、单位推荐:CSIAM团体会员。
*注:因CSIAM团体会员名单每月实时更新,请以2022年12月《简讯》中的名单(或查看附件中的团体会员名单,二者一致)为准。
每位推荐人和推荐单位每年限推荐一项成果。
三、候选落地成果需提交以下材料:
不超过1000字的项目简介;
不超过10分钟的项目视频介绍;
2份个人推荐信或1份单位推荐信。
注:视频中请清楚描述项目问题背景、项目所涉及的数学问题、解决方法、以及成果应用后所产生的效益/性能/影响等。
四、请于2023年3月5日(含)前将申请材料上传提交至网站:
https://math2industry.org.cn/certification。
五、联系方式:
联系人:张梦思
电 话:157-3886-8281
邮 箱:mszhang@csiam.org.cn
中国工业与应用数学学会
2023年1月5日
- 摘要
尊敬的各位老师:
大家好!为了更好地推动各学科的学术交流,中国数学会将对2023年拟将召开的部分重要学术会议给予适当支持,如您单位有重要的学术会议需要中国数学会的支持,请提交以下材料:
1. 会议资助申请表WORD版及PDF版(PDF版需在相应位置盖章签字,模板见附件)。
2. 会议日程WORD版。
3. 会议邀请报告人信息(包含姓名、单位等)WORD版。
4. 科普活动计划,WORD版。
以上材料请于2023年2月28日前发送至中国数学会办公室,过时将不予受理。
注意事项:
1. 仅支持学术会议,针对同一个机构同一年举办的会议原则上只支持1个。
2. 会议名称原则上不能带有“全国”“中国”等字眼。
3. 申请中国数学会资助的会议需要开展至少一次的科普活动,并录制科普活动视频,以便在中国数学会B站进行宣传。会后将科普活动视频及会议纪要(需记录科普情况)反馈至数学会办公室。
4. 学术带头人最好由国际国内的著名专家担任。
5. 国际会议应包含数量较多的国外专家学者,材料提交尽量齐全,需要提交程序委员会名单。系列国际会议需提交会议前三届会议召开情况的文字介绍,比如历届会议地点,重要参会人员等。
感谢您的支持!
中国数学会办公室
2023年1月28日
- 摘要
Thematic Session Proposals
Call for Thematic Session Proposals at the China-Brazil Joint Mathematical Meeting – Foz do Iguacu, Brazil.
Proposals of thematic sessions at China-Brazil Joint Mathematical Meeting are welcomed by the Organizing Committee. Early submission of proposals is encouraged: good proposals will be approved on a regular basis before the deadline, so that session speakers may be invited with enough time to make travel and funding arrangements.
A proposal should include : the names, affiliations and contact information (including email addresses) of all the organizers, with one organizer designated as “contact organizer”, a title and a brief presentation of the topic and scope (up to one page), the list of speakers including the tentative title and abstract of each talk.
Each special session will consist from 8 to 12 talks of 30 minutes distributed over slots of at most 4 talks each.
The list of speakers must include mathematicians from China and Brazil. Preference will be given to proposals whose list of suggested speakers represents diversity in all aspects.
Proposals must be sent to: brazilchina2023@gmail.com and cc to the Chinese Mathematical Society: cms@math.ac.cn.
More information can be found at:
https://sbm.org.br/jointmeeting-china/ or http://www.cms.org.cn/Home/notices/notices_details/id/990.html
Important Dates:
Call for thematic sessions: Oct. 31st, 2022
Session submission: extended deadline, Feb., 15th, 2023
Session acceptance notice: Jan. 30th—Feb. 28th, 2023
Abstract/Contributed talk submission: Feb., 1st—Mar., 1st, 2023
Acceptance notice: Apr., 1st, 2023
Early registration: Mar., 1st—Jun., 1st, 2023
Registration: Jul., 1st, 2023
Conference: Jul., 17—21, 2023
- 摘要
中国数学会2022年学术年会将于2023年2月18日—22日(18日报到,22日离会)在湖北省武汉市举行。这是中国数学工作者一年一次的学术盛会,开幕式上将颁发中国数学会第十六届华罗庚数学奖、第十九届陈省身数学奖和第十六届钟家庆数学奖。会上将邀请叶向东、张平、唐梓洲和单芃等4位数学家作大会报告,邀请百余位数学家在代数与数论、几何与拓扑、常微动力系统、偏微分方程、实分析和复分析、计算数学、概率和统计、运筹与控制、组合与计算机数学、数学史与数学教育等10个领域作分组报告,还将邀请部分院士和专家在武汉地区大中院校作科普报告。会议期间还将召开数学文化与传播论坛、中学生创新人才培养论坛等专业论坛,同时召开一些数学专业领域的卫星会议。
会议注册和缴费以及酒店预定系统均已开通,敬请参会代表尽早按网页说明(http://ssci.whut.edu.cn/cms2022/)尽快完成网上注册、并预订酒店房间。
本次会议由于疫情影响延期举办,已注册和缴费的人员无需再次注册和缴费。已提前缴费但不能参会的人员请在2023年2月16日前发邮件至cms@math.ac.cn和songt@whut.edu.cn申请会议费退款。具体缴费与开发票信息请参考《中国数学会缴费平台操作说明》。
具体信息参见
http://www.cms.org.cn/ueditor/php/upload/file/20230130/1675064069210659.pdf
- 摘要
The 10th Heidelberg Laureate Forum will take place from September 24 to 29 and brings together some of the brightest minds in mathematics and computer science for an unrestrained, interdisciplinary exchange. During the weeklong conference, young researchers and other participants have the opportunity to connect with scientific pioneers and learn how the laureates made it to the top of their fields. Laureate lectures and discussions, plus various interactive program elements are some of the Forum's fundamental elements. This compelling networking event combines scientific, social and outreach activities in a unique atmosphere, sustained by comprehensive exchange and scientific inspiration.
Young researchers can apply to attend the 10th HLF from Friday, November 11, 2022 until Saturday, February 11, 2023.
Journalists are encouraged to cover the forum and have the opportunity to apply for a limited numbers of travel grants from February 20 to April 30.
Both groups can apply here: https://application.heidelberg-laureate-forum.org
For more information on the young researcher applications process, please check out our FAQ.
Updates and detailed information will be made available on the website as the program continues to materialize.
- 摘要
王培光, 吴曦冉
李莉丽, 张兴发, 邓春亮, 李元
陈梅香, 谢溪庄
王中园, 张成
李仲庆
商玉凤, 刘庆怀
李丽, 卢延荣
李鑫, 蒋峰
吴鹏, 赵洪涌
贾兆丽, 杨舒荃, 吴霍俊
- 摘要
Preface: Hyperbolic System of Conservation Laws and Related Topics
Fei-Min HUANG
On Subsonic and Subsonic-Sonic Flows with General Conservatives Force in Exterior Domains
Xumin GU, Tian-Yi WANG
Smooth Solution of Multi-dimensional Nonhomogeneous Conservation Law: Its Formula, and Necessary and Sufficient Blowup Criterion
Gao-Wei CAO, Hui KAN, Wei XIANG, Xiao-Zhou YANG
Time Decay Rate of Solutions Toward the Viscous Shock Waves under Periodic Perturbations for the Scalar Conservation Law with Nonlinear Viscosity
Ye-Chi LIU
Stability of a Composite Wave of Two Separate Strong Viscous Shock Waves for 1-D Isentropic Navier-Stokes System
Lin CHANG
Boundary Layer Solution of the Boltzmann Equation for Specular Boundary Condition
Fei-Min HUANG, Zai-Hong JIANG, Yong WANG
The Time Asymptotic Expansion of the Bipolar Hydrodynamic Model for Semiconductors
Xiao-Chun WU
Global Weak Entropy Solution of Nonlinear Ideal Reaction Chromatography System and Applications
Jing ZHANG, Hong-Xia LIU, Tao PAN
Global Smooth Solution to the Incompressible Navier-Stokes-Landau-Lifshitz Equations
Guang-Wu WANG, You-De WANG
Incompressible Limit of the Compressible Q-tensor System of Liquid Crystals
Yi-Xuan WANG
Sharp Condition for Global Existence of Supercritical Nonlinear Schrödinger Equation with a Partial Confinement
Cheng-Lin WANG, Jian ZHANG
xuzhiqin@sjtu.edu.cn
- 摘要
Journal of Machine Learning (JML, jml.pub) is a new journal, published by Global Science Press and sponsored by the Center for Machine Learning Research, Peking University & AI for Science Institute, Beijing. Professor Weinan E serves as the Editor-in-Chief together with managing editors Jiequn Han, Arnulf Jentzen, Qianxiao Li, Lei Wang, Zhi-Qin John Xu, Linfeng Zhang. JML publishes high quality research papers in all areas of machine learning (ML), including innovative algorithms, theory, and applications in all areas. The journal emphasizes a balanced coverage of both theory and application.
An introduction to the fourth issue of Journal of Machine Learning.
Title: A Mathematical Framework for Learning Probability Distributions
Authors: Hongkang Yang
DOI: 10.4208/jml.221202, J. Mach. Learn., 1 (2022), pp. 373-431.
The modeling of probability distributions is an important branch of machine learning. It became popular in recent years thanks to the success of deep generative models in difficult tasks such as image synthesis and text conversation. Nevertheless, we still lack a theoretical understanding of the good performance of distribution learning models. One mystery is the following paradox: it is generally inevitable that the model suffers from memorization (converges to the empirical distribution of the training samples) and thus becomes useless, and yet in practice the trained model can generate new samples or estimate the probability density over unseen samples. Meanwhile, the existing models are so diverse that it has become overwhelming for practitioners and researchers to get a clear picture of this fast-growing subject. This paper provides a mathematical framework that unifies all the well-known models, so that they can be systemically derived based on simple principles. This framework enables our analysis of the theoretical mysteries of distribution learning, in particular, the paradox between memorization and generalization. It is established that the model during training enjoys implicit regularization, so that it approximates the hidden target distribution before eventually turning towards the empirical distribution. With early stopping, the generalization error escapes from the curse of dimensionality and thus the model generalizes well.
Title: Approximation of Functionals by Neural Network Without Curse of Dimensionality
Authors: Yahong Yang & Yang Xiang
DOI: 10.4208/jml.221018, J. Mach. Learn., 1 (2022), pp. 342-372.
Learning functionals or operators by neural networks is nowadays widely used in computational and applied mathematics. Compared with learning functions by neural networks, an essential difference is that the input spaces of functionals or operators are infinite dimensional space. Some recent works learnt functionals or operators by reducing the input space into a finite dimensional space. However, the curse of dimensionality always exists in this type of methods. That is, in order to maintain the accuracy of an approximation, the number of sample points grows exponentially with the increase of dimension.
In this paper, we establish a new method for the approximation of functionals by neural networks without curse of dimensionality. Functionals, such as linear functionals and energy functionals, have a wide range of important applications in science and engineering fields. We define Fourier series of functionals and the associated Barron spectral space of functionals, based on which our new neural network approximation method is established. The parameters and the network structure in our method only depend on the functional. The approximation error of the neural network is $O(1/\sqrt{m})$ where $m$ is the size of the network, which does not depend on the dimensionality.
Authorization Required
This server could not verify that you are authorized to access the document requested. Either you supplied the wrong credentials (e.g., bad password), or your browser doesn't understand how to supply the credentials required.