arrow
第十九卷, 第十九期
【期刊信息】SCIENCE CHINA Mathematics, Vol.65, No.9, 2022

zhihua@scichina.org


URL: http://link.springer.com/journal/11425/65/9/page/1
URL: https://www.sciengine.com/SCM/issue/65/9
URL: https://link.springer.com/journal/11425

In this issue

Minimal silting modules and ring extensions
Lidia Angeleri Hügel, Weiqing Cao
Sci China Math, 65(9), 2022, pp. 1775-1794
https://doi.org/10.1007/s11425-020-1898-6

A Kählerness criterion for real (1, 1)-classes on projective manifolds through extendibility of singular potentials
Xiankui Meng, Zhiwei Wang
Sci China Math, 65(9), 2022, pp. 1795-1802
https://doi.org/10.1007/s11425-021-1934-1

Finsler Trudinger-Moser inequalities on $R^2$
Nguyen Tuan Duy, Le Long Phi
Sci China Math, 65(9), 2022, pp. 1803-1826
https://doi.org/10.1007/s11425-020-1820-5

On the fractional doubly parabolic Keller-Segel system modelling chemotaxis
Mario Bezerra, Claudio Cuevas, Clessius Silva, Herme Soto
Sci China Math, 65(9), 2022, pp. 1827-1874
https://doi.org/10.1007/s11425-020-1846-x

Almost automorphically-forced flows on $S^1$ or R in one-dimensional almost periodic semilinear heat equations
Wenxian Shen, Yi Wang, Dun Zhou
Sci China Math, 65(9), 2022, pp. 1875-1894
https://doi.org/10.1007/s11425-021-1938-2

Nearly invariant subspaces for shift semigroups
Yuxia Liang, Jonathan R. Partington
Sci China Math, 65(9), 2022, pp. 1895-1908
https://doi.org/10.1007/s11425-020-1915-y

Actads
Sophie Kriz
Sci China Math, 65(9), 2022, pp. 1909-1952
https://doi.org/10.1007/s11425-021-1902-3

Asymptotic expansions of complete Kähler-Einstein metrics with finite volume on quasi-projective manifolds
Xumin Jiang, Yalong Shi
Sci China Math, 65(9), 2022, pp. 1953-1974
https://doi.org/10.1007/s11425-021-1903-7

Sufficient dimension reduction in the presence of controlling variables
Guoliang Fan, Liping Zhu
Sci China Math, 65(9), 2022, pp. 1975-1996
https://doi.org/10.1007/s11425-020-1824-8