arrow
第十卷, 第八期
期刊内容: Communications in Computational Physics, Vol. 13, No. 4, 2013

cicp-owner@global-sci.com


Articles in the Issue:
Regular Articles: 

Craig Collins, Jie Shen and Steven M. Wise
An efficient, energy stable scheme for the Cahn-Hilliard-Brinkman system.
Commun. Comput. Phys., 13 (2013), pp. 929-957.

Mohammad Hossein Bani-Hashemian, Stefan Hellander and Per Ltstedt
Efficient sampling in event-driven algorithms for reaction diffusion processes.
Commun. Comput. Phys., 13 (2013), pp. 958-984.

Guillaume Chiavassa and Bruno Lombard
Wave propagation across acoustic/Biot's media: a finite difference method.
Commun. Comput. Phys., 13 (2013), pp. 985-1012.

Haiyang Gao, Z. J. Wang and H. T. Huynh
Differential formulation of discontinuous Galerkin and Related methods for the Navier-Stokes equations.
Commun. Comput. Phys., 13 (2013), pp. 1013-1044.

Jie Shen, Xiaofeng Yang and Qi Wang
Mass and volume conservation in phase field models for binary fluids.
Commun. Comput. Phys., 13 (2013), pp. 1045-1065.

Yumei Huang, Michael Ng and Tieyong Zeng
The convex relaxation method on deconvolution model with multiplicative noise.
Commun. Comput. Phys., 13 (2013), pp. 1066-1092.

Han Wang, Dan Hu and Pingwen Zhang
Measuring the spontaneous curvature of bilayer membranes by molecular dynamics simulations.
Commun. Comput. Phys., 13 (2013), pp. 1093-1106.

Tony W. H. Sheu, L. Y. Liang and J. H. Li
Development of an explicit symplectic scheme that optimizes the dispersion-relation equation of the Maxwell's equations.
Commun. Comput. Phys., 13 (2013), pp. 1107-1133.

Jinqing Yu, Xiaolin Jin, Weimin Zhou, Bin Li and Yuqiu Gu
High-order interpolation algorithms for charge conservation in particle-in-cell simulations.
Commun. Comput. Phys., 13 (2013), pp. 1134-1150.

Liang Wang, Zhaoli Guo, Baochang Shi and Chuguang Zheng
Evaluation of three lattice Boltzmann models for particulate flows.
Commun. Comput. Phys., 13 (2013), pp. 1151-1172.

Samih Zein, Benot Colson and Franois Glineur
An efficient sampling method for regression-based polynomial chaos expansion.
Commun. Comput. Phys., 13 (2013), pp. 1173-1188.