arrow
第十六卷, 第二期
【新书信息】Proper Orthogonal Decomposition Methods for Partial Differential Equations

罗振东


Authors: Zhendong Luo, Goong Chen

eBook ISBN: 9780128167991

Paperback ISBN: 9780128167984

Imprint: Academic Press

Published Date: 3rd December 2018

Page Count: 278

Table of Contents
1.Reduced-Order Extrapolation Finite Difference Schemes Based on Proper Orthogonal Decomposition
2.Reduced-Order Extrapolation Finite Element Methods Based on Proper Orthogonal Decomposition
3.Reduced-Order Extrapolation Finite Volume Element Methods Based on Proper Orthogonal Decomposition
4.Epilogue and Outlook

Description
Proper Orthogonal Decomposition Methods for Partial Differential Equations evaluates the potential applications of POD reduced-order numerical methods in increasing computational efficiency, decreasing calculating load and alleviating the accumulation of truncation error in the computational process. 
Introduces the foundations of finite-differences, finite-elements and finite-volume-elements. Models of time-dependent PDEs are presented, with detailed numerical procedures, implementation and error analysis. Output numerical data are plotted in graphics and compared using standard traditional methods. 
These models contain parabolic, hyperbolic and nonlinear systems of PDEs, suitable for the user to learn and adapt methods to their own R&D problems.

Key Features
·Explains ways to reduce order for PDEs by means of the POD method so that reduced-order models 
  have few unknowns
·Helps readers speed up computation and reduce computation load and memory requirements while 
  numerically capturing system characteristics
·Enables readers to apply and adapt the methods to solve similar problems for PDEs of hyperbolic, 
  parabolic and nonlinear types
Readership

Graduate students and researchers in mathematically intensive environments who perform large scale 
computations.

About the Authors
Zhendong Luo is Professor of Mathematics at North China Electric Power University, Beijing, China. 
Luo is heavily involved in the areas of Optimizing Numerical Methods of PDEs; Finite Element Methods; 
Finite Difference Scheme; Finite Volume Element Methods; Spectral-Finite Methods; and Computational Fluid Dynamics. For the last 12 years, Luo has worked mainly on Reduced Order Numerical Methods based on Proper Orthogonal Decomposition Technique for Time Dependent Partial Differential Equations.

Goong Chen is Professor of Mathematics and Aerospace Engineering, Texas A & M University. His research interests include control theory, computational mechanics, numerical solutions by boundary elements, 
partial differential equations, quantum computation, and chaotic dynamics. He is Editor-in Chief of the Journal of Mathematical Analysis and Applications and Associate Editor for Physica Scripta and International Journal on Quantum Information.