arrow
Volume 8, Issue 1
A Model for Vague Association Rule Mining in Temporal Databases

Anjana Pandey and K.R.Pardasani

J. Info. Comput. Sci. , 8 (2013), pp. 063-074.

Export citation
  • Abstract
There are different university offering different types of courses over several years, and the biggest issue with that is how to get information to make course more effective. In real life these types of database usually contain temporal coherences, which cannot be captured by means of standard association rule mining. Here temporal Association rule mining can be used to evaluate the course effectiveness and helps to look for in regards to changes in performance of the course from time to time. For Example there is a course offering different topics. We can say that the topics having full attendance are totally effective and carry no hesitation information. While there are some topics which are almost fully attendant carry some hesitation information. This hesitation information is valuable and can be used to make the course more effective and interesting. Thus there is need for developing temporal vague association rule algorithms that reveal such hesitation information and temporal coherences within this data.
  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JICS-8-063, author = {Anjana Pandey and K.R.Pardasani}, title = {A Model for Vague Association Rule Mining in Temporal Databases}, journal = {Journal of Information and Computing Science}, year = {2024}, volume = {8}, number = {1}, pages = {063--074}, abstract = { There are different university offering different types of courses over several years, and the biggest issue with that is how to get information to make course more effective. In real life these types of database usually contain temporal coherences, which cannot be captured by means of standard association rule mining. Here temporal Association rule mining can be used to evaluate the course effectiveness and helps to look for in regards to changes in performance of the course from time to time. For Example there is a course offering different topics. We can say that the topics having full attendance are totally effective and carry no hesitation information. While there are some topics which are almost fully attendant carry some hesitation information. This hesitation information is valuable and can be used to make the course more effective and interesting. Thus there is need for developing temporal vague association rule algorithms that reveal such hesitation information and temporal coherences within this data. }, issn = {1746-7659}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jics/22629.html} }
TY - JOUR T1 - A Model for Vague Association Rule Mining in Temporal Databases AU - Anjana Pandey and K.R.Pardasani JO - Journal of Information and Computing Science VL - 1 SP - 063 EP - 074 PY - 2024 DA - 2024/01 SN - 8 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jics/22629.html KW - Hesitation Information, Vague Association Rule, AH pair,Temporal database. AB - There are different university offering different types of courses over several years, and the biggest issue with that is how to get information to make course more effective. In real life these types of database usually contain temporal coherences, which cannot be captured by means of standard association rule mining. Here temporal Association rule mining can be used to evaluate the course effectiveness and helps to look for in regards to changes in performance of the course from time to time. For Example there is a course offering different topics. We can say that the topics having full attendance are totally effective and carry no hesitation information. While there are some topics which are almost fully attendant carry some hesitation information. This hesitation information is valuable and can be used to make the course more effective and interesting. Thus there is need for developing temporal vague association rule algorithms that reveal such hesitation information and temporal coherences within this data.
Anjana Pandey and K.R.Pardasani. (2024). A Model for Vague Association Rule Mining in Temporal Databases. Journal of Information and Computing Science. 8 (1). 063-074. doi:
Copy to clipboard
The citation has been copied to your clipboard