arrow
Volume 9, Issue 3
Internet Traffic Modelling -Variance Based Markovian Fitting of Fractal Point Process from Self-Similarity Perspective

Rajaiah Dasari and Malla Reddy Perati

J. Info. Comput. Sci. , 9 (2014), pp. 210-223.

Export citation
  • Abstract
Most of the proposed self-similar traffic models could not address fractal onset time at which self-similar behavior actually begins. This parameter has considerable impact on network performance. Fractal point process (FPP) emulates self-similar traffic and involves fractal onset time (FOT). However, this process is asymptotic in nature and has less effective in queueing based performance. In this paper, we propose a model of variance based Markovian fitting. The proposed method is to match the variance of FPP and superposed Markov modulated Poisson Process (MMPP) while taking FOT into consideration. Superposition consists of several interrupted Poisson processes (IPPs) and Poisson process. We present how well resultant MMPP could approximate FPP which emulates self-similar traffic. We investigate queueing behavior of resultant queueing system in terms of a packet loss probability. We demonstrate how FOT affects the fitting model and queueing behavior. We conclude from the numerical example that network nodes with a self-similar input traffic can be well represented by a queueing system with MMPP input
  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JICS-9-210, author = {Rajaiah Dasari and Malla Reddy Perati}, title = {Internet Traffic Modelling -Variance Based Markovian Fitting of Fractal Point Process from Self-Similarity Perspective}, journal = {Journal of Information and Computing Science}, year = {2024}, volume = {9}, number = {3}, pages = {210--223}, abstract = { Most of the proposed self-similar traffic models could not address fractal onset time at which self-similar behavior actually begins. This parameter has considerable impact on network performance. Fractal point process (FPP) emulates self-similar traffic and involves fractal onset time (FOT). However, this process is asymptotic in nature and has less effective in queueing based performance. In this paper, we propose a model of variance based Markovian fitting. The proposed method is to match the variance of FPP and superposed Markov modulated Poisson Process (MMPP) while taking FOT into consideration. Superposition consists of several interrupted Poisson processes (IPPs) and Poisson process. We present how well resultant MMPP could approximate FPP which emulates self-similar traffic. We investigate queueing behavior of resultant queueing system in terms of a packet loss probability. We demonstrate how FOT affects the fitting model and queueing behavior. We conclude from the numerical example that network nodes with a self-similar input traffic can be well represented by a queueing system with MMPP input }, issn = {1746-7659}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jics/22581.html} }
TY - JOUR T1 - Internet Traffic Modelling -Variance Based Markovian Fitting of Fractal Point Process from Self-Similarity Perspective AU - Rajaiah Dasari and Malla Reddy Perati JO - Journal of Information and Computing Science VL - 3 SP - 210 EP - 223 PY - 2024 DA - 2024/01 SN - 9 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jics/22581.html KW - Self-similarity KW - Fractal point process KW - fractal onset time KW - Markov modulated Poisson process, Variance KW - Packet loss probability. AB - Most of the proposed self-similar traffic models could not address fractal onset time at which self-similar behavior actually begins. This parameter has considerable impact on network performance. Fractal point process (FPP) emulates self-similar traffic and involves fractal onset time (FOT). However, this process is asymptotic in nature and has less effective in queueing based performance. In this paper, we propose a model of variance based Markovian fitting. The proposed method is to match the variance of FPP and superposed Markov modulated Poisson Process (MMPP) while taking FOT into consideration. Superposition consists of several interrupted Poisson processes (IPPs) and Poisson process. We present how well resultant MMPP could approximate FPP which emulates self-similar traffic. We investigate queueing behavior of resultant queueing system in terms of a packet loss probability. We demonstrate how FOT affects the fitting model and queueing behavior. We conclude from the numerical example that network nodes with a self-similar input traffic can be well represented by a queueing system with MMPP input
Rajaiah Dasari and Malla Reddy Perati. (2024). Internet Traffic Modelling -Variance Based Markovian Fitting of Fractal Point Process from Self-Similarity Perspective. Journal of Information and Computing Science. 9 (3). 210-223. doi:
Copy to clipboard
The citation has been copied to your clipboard