arrow
Volume 17, Issue 1
Affine Invariant Representation with Generic Polar Radius Integral Transform

Chunyan Liu, Jianwei Yang & Chengxi Zhou

J. Info. Comput. Sci. , 17 (2022), pp. 064-074.

Export citation
  • Abstract

In many computer vision tasks, the extraction of features invariant to affine transform plays an important role. To achieve better accuracy, region-based approaches usually need expensive computation. Whereas, contour-based methods need less computation, but their performance is strongly dependant on the boundary extraction. A method, generic polar radius integral transform (GPRIT), is proposed to combine region-based and contour-based method together for the extraction of affine invariant features. Polar radius integral transform and central projection transform are all special cases of the proposed GPRIT. With GPRIT, any object is converted into a closed curve for data reduction. Consequently, stationary wavelet transform is conducted to construct affine invariants. Several experiments have been presented to evaluate performance of the proposed GPRIT.

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JICS-17-064, author = {Liu , ChunyanYang , Jianwei and Zhou , Chengxi}, title = {Affine Invariant Representation with Generic Polar Radius Integral Transform}, journal = {Journal of Information and Computing Science}, year = {2024}, volume = {17}, number = {1}, pages = {064--074}, abstract = {

In many computer vision tasks, the extraction of features invariant to affine transform plays an important role. To achieve better accuracy, region-based approaches usually need expensive computation. Whereas, contour-based methods need less computation, but their performance is strongly dependant on the boundary extraction. A method, generic polar radius integral transform (GPRIT), is proposed to combine region-based and contour-based method together for the extraction of affine invariant features. Polar radius integral transform and central projection transform are all special cases of the proposed GPRIT. With GPRIT, any object is converted into a closed curve for data reduction. Consequently, stationary wavelet transform is conducted to construct affine invariants. Several experiments have been presented to evaluate performance of the proposed GPRIT.

}, issn = {1746-7659}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jics/22363.html} }
TY - JOUR T1 - Affine Invariant Representation with Generic Polar Radius Integral Transform AU - Liu , Chunyan AU - Yang , Jianwei AU - Zhou , Chengxi JO - Journal of Information and Computing Science VL - 1 SP - 064 EP - 074 PY - 2024 DA - 2024/01 SN - 17 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jics/22363.html KW - generic polar radius integral transform (GPRIT), invariant, affine transform, feature extraction. AB -

In many computer vision tasks, the extraction of features invariant to affine transform plays an important role. To achieve better accuracy, region-based approaches usually need expensive computation. Whereas, contour-based methods need less computation, but their performance is strongly dependant on the boundary extraction. A method, generic polar radius integral transform (GPRIT), is proposed to combine region-based and contour-based method together for the extraction of affine invariant features. Polar radius integral transform and central projection transform are all special cases of the proposed GPRIT. With GPRIT, any object is converted into a closed curve for data reduction. Consequently, stationary wavelet transform is conducted to construct affine invariants. Several experiments have been presented to evaluate performance of the proposed GPRIT.

Liu , ChunyanYang , Jianwei and Zhou , Chengxi. (2024). Affine Invariant Representation with Generic Polar Radius Integral Transform. Journal of Information and Computing Science. 17 (1). 064-074. doi:
Copy to clipboard
The citation has been copied to your clipboard