arrow
Volume 17, Issue 1
Analytic Solutions of a Class of Matrix Minimization Model with Unitary Constraints

Ping Shi, Nan Li & Xu-Chen Lu

J. Info. Comput. Sci. , 17 (2022), pp. 047-057.

Export citation
  • Abstract

In this paper we present analytic solutions of a class of matrix minimization model with unitary constraints as follows:$$\mathop{\rm min}_{U_k\in {\rm U}_n, W_k\in {\rm U}_t, V_k\in {\rm U}_m} \ | {\rm det}(cI_m\pm \prod\limits_{k=1}^s A_k U_k B_k W_k C_k V)|$$ $$\mathop{\rm min}_{U_k\in {\rm U}_n, W_k\in {\rm U}_t, V_k\in {\rm U}_m} |{\rm tr}(cI_m \pm \prod^s_{k=1}A_k U_K B_k W_k C_k V)| $$ where $A_k\in C^{m\times n}$, $B_k\in C^{n\times t}$, $C_k\in C^{t\times m}$, $C^{m\times n}$ denotes $m\times n$ complex matrix set, and $c$ is a complex number, $I_m$ denotes the $m$-order identity matrix, det$(\cdot)$ and tr$(\cdot)$ denote matrix determinant and trace function, respectively. The proposed results improve some existing ones in Xu (2019) [1]. Numerical examples are given to verify the validity of the theoretical results.

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JICS-17-047, author = {Shi , PingLi , Nan and Lu , Xu-Chen}, title = {Analytic Solutions of a Class of Matrix Minimization Model with Unitary Constraints}, journal = {Journal of Information and Computing Science}, year = {2024}, volume = {17}, number = {1}, pages = {047--057}, abstract = {

In this paper we present analytic solutions of a class of matrix minimization model with unitary constraints as follows:$$\mathop{\rm min}_{U_k\in {\rm U}_n, W_k\in {\rm U}_t, V_k\in {\rm U}_m} \ | {\rm det}(cI_m\pm \prod\limits_{k=1}^s A_k U_k B_k W_k C_k V)|$$ $$\mathop{\rm min}_{U_k\in {\rm U}_n, W_k\in {\rm U}_t, V_k\in {\rm U}_m} |{\rm tr}(cI_m \pm \prod^s_{k=1}A_k U_K B_k W_k C_k V)| $$ where $A_k\in C^{m\times n}$, $B_k\in C^{n\times t}$, $C_k\in C^{t\times m}$, $C^{m\times n}$ denotes $m\times n$ complex matrix set, and $c$ is a complex number, $I_m$ denotes the $m$-order identity matrix, det$(\cdot)$ and tr$(\cdot)$ denote matrix determinant and trace function, respectively. The proposed results improve some existing ones in Xu (2019) [1]. Numerical examples are given to verify the validity of the theoretical results.

}, issn = {1746-7659}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jics/22361.html} }
TY - JOUR T1 - Analytic Solutions of a Class of Matrix Minimization Model with Unitary Constraints AU - Shi , Ping AU - Li , Nan AU - Lu , Xu-Chen JO - Journal of Information and Computing Science VL - 1 SP - 047 EP - 057 PY - 2024 DA - 2024/01 SN - 17 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jics/22361.html KW - constrained matrix minimization model, determinant function, trace function, unitary constraints. AB -

In this paper we present analytic solutions of a class of matrix minimization model with unitary constraints as follows:$$\mathop{\rm min}_{U_k\in {\rm U}_n, W_k\in {\rm U}_t, V_k\in {\rm U}_m} \ | {\rm det}(cI_m\pm \prod\limits_{k=1}^s A_k U_k B_k W_k C_k V)|$$ $$\mathop{\rm min}_{U_k\in {\rm U}_n, W_k\in {\rm U}_t, V_k\in {\rm U}_m} |{\rm tr}(cI_m \pm \prod^s_{k=1}A_k U_K B_k W_k C_k V)| $$ where $A_k\in C^{m\times n}$, $B_k\in C^{n\times t}$, $C_k\in C^{t\times m}$, $C^{m\times n}$ denotes $m\times n$ complex matrix set, and $c$ is a complex number, $I_m$ denotes the $m$-order identity matrix, det$(\cdot)$ and tr$(\cdot)$ denote matrix determinant and trace function, respectively. The proposed results improve some existing ones in Xu (2019) [1]. Numerical examples are given to verify the validity of the theoretical results.

Shi , PingLi , Nan and Lu , Xu-Chen. (2024). Analytic Solutions of a Class of Matrix Minimization Model with Unitary Constraints. Journal of Information and Computing Science. 17 (1). 047-057. doi:
Copy to clipboard
The citation has been copied to your clipboard