- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Local Hardy Spaces and Inhomogeneous Dirichlet Problems in Exterior Regular Domains
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-14-1,
author = {Henggeng Wang and Houyu Jia },
title = {Local Hardy Spaces and Inhomogeneous Dirichlet Problems in Exterior Regular Domains},
journal = {Journal of Partial Differential Equations},
year = {2001},
volume = {14},
number = {1},
pages = {1--11},
abstract = { In this paper, firstly we give an atomic decomposition of the local Hardy spaces h^p_r(Ω)(O < p ≤ 1) and their dual spaces. where the domain Ω is exterior regular in R^n(n ≥ 3). Then for given data f ∈ h^p_r(Ω), we discuss the inhomogeneous Dirichlet problems: {Lu = f \quad in Ω u = 0 \qquad on ∂ Ω where the operator L is uniformly elliptic. Also we obtain the estimation of Green potential in the local Hardy spaces h^p_r(Ω).},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5464.html}
}
TY - JOUR
T1 - Local Hardy Spaces and Inhomogeneous Dirichlet Problems in Exterior Regular Domains
AU - Henggeng Wang & Houyu Jia
JO - Journal of Partial Differential Equations
VL - 1
SP - 1
EP - 11
PY - 2001
DA - 2001/02
SN - 14
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5464.html
KW - Exterior regular domain
KW - local Hardy space
KW - Hölder space
KW - inhomogeneous Dirichlet problem
KW - Green potential
AB - In this paper, firstly we give an atomic decomposition of the local Hardy spaces h^p_r(Ω)(O < p ≤ 1) and their dual spaces. where the domain Ω is exterior regular in R^n(n ≥ 3). Then for given data f ∈ h^p_r(Ω), we discuss the inhomogeneous Dirichlet problems: {Lu = f \quad in Ω u = 0 \qquad on ∂ Ω where the operator L is uniformly elliptic. Also we obtain the estimation of Green potential in the local Hardy spaces h^p_r(Ω).
Henggeng Wang and Houyu Jia . (2001). Local Hardy Spaces and Inhomogeneous Dirichlet Problems in Exterior Regular Domains.
Journal of Partial Differential Equations. 14 (1).
1-11.
doi:
Copy to clipboard