LOCAL HARDY SPACES AND INHOMOGENEOUS DIRICHLET PROBLEMS IN EXTERIOR REGULAR DOMAINS*

Wang Henggeng

(Department of Mathematics, South-China Normal University, Guangzhou, 510631, China)

Jia Houvu

(Department of Mathematics, Zhejiang University, Zhejiang, 310028, China) (Received July 2, 1999; revised July 10, 2000)

Abstract In this paper, firstly we give an atomic decomposition of the local Hardy spaces $h_r^p(\Omega)(0 and their dual spaces, where the domain <math>\Omega$ is exterior regular in $R^n (n \ge 3)$. Then for given data $f \in h_r^p(\Omega)$, we discuss the inhomogeneous Dirichlet problems:

 $\begin{cases}
Lu = f & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}$ (1)

where the operator L is uniformly elliptic. Also we obtain the estimation of Green potential in the local Hardy spaces $h_r^p(\Omega)$.

Key Words Exterior regular domain; local Hardy space; Hölder space; inhomogeneous Dirichlet problem; Green potential.

1991 MR Subject Classification 31J15, 35J05, 35J25, 42B30. Chinese Library Classification 0175.25, 0175.23.

0. Introduction

In [1], the authors brought forward the two questions. What are the possible notions of $H^p(\Omega)$ that generalize the usual Hardy spaces $H^p(R^n)$? And in the context of the relevant $H^p(\Omega)$, can one utilize these spaces to partial differential equations. In [1–3], the boundary of the domains Ω in R^n are C^{∞} or Lipschitz. In this paper, we only request that the domain is exterior regular. Let's restrict $n \geq 3$.

We say that a domain Ω is exterior regular (brev. $\Omega \in ER(n)$) as [4], if Ω is a bounded domain in R^n , and there is a constant c > 0, $\delta_0 \in (0,1)$, such that for all cube Q centered at $\partial\Omega$ with side-length less than or equal δ_0 , then there exists a subcube Q^e with side-length cl(Q) and $Q^e \subset Q \cap (\bar{\Omega})^c$.

We recall the local Hardy spaces $h^p(R^n)$ for $0 in [5], <math>h^p(R^n) := \{f \in D'(R^n) : \sup_{0 < t \le 1} |\phi_t * f(x)| \in L^p(R^n) \}$, where $\phi \in C_0^{\infty}(R^n)$, $\int \phi(x) dx = 1$, $\phi_t = t^{-n} \phi(t^{-1}x)$. In [5], the author gives the atomic decomposition and their dual space in R^n . Let

The work supported by National Natural Science Foundation of China (19971030).

 $h_r^p(\Omega)$ denote the local Hardy spaces in Ω as [1], i.e., $h_r^p(\Omega) = \{f \in D'(\Omega) : \exists F \in D'(\Omega) : \exists F \in D'(\Omega) \}$ $H^p(\mathbb{R}^n), s.t.F|_{\Omega} = f$.

Naturally, we may ask how about the atomic decompositions and their dual spaces

for $h_r^p(\Omega)$ for the general domains Ω .

Definition 1 Let the domain Ω be bounded and connected, 0 , and thefunction $a(x) \in L^2(\Omega)$, (then there exists a constant $\delta_0 = \delta_0(\Omega) > 0$),

there exists a cube Q ⊂ Ω, such that supp a ⊂ Q, ||a||_{L²(Ω)} ≤ |Q|^{1/2-1/p};

- (2) $\int_{\Omega} a(x)x^{\alpha}dx = 0, |\alpha| \leq [n(1/p-1)], \text{ where } [x] \text{ denotes the integer part of a real}$ number x;
 - (3) the side length of the cube l(Q) > δ₀;
 - (4) if $l(Q) \leq \delta_0$, then $4Q \subset \Omega$;
 - (5) $Q \subset \Omega$, and $l(Q) \leq \text{dist}(Q, \partial \Omega) \leq 4l(Q)$.

The function a(x) is called (p, I)-atom if a(x) satisfies (1) (2) (4) (brev. $Q \in I$). The function a(x) is called (p,II)-atom if a(x) satisfies (1) (5), (brev. $Q \in II$).

The function a(x) is called (p, III)-atom if a(x) satisfies (1) (3), $(brev. Q \in III)$.

We have the following atomic decomposition theorem (See [1]):

Theorem 2 Let $\Omega \in ER(n)$, $0 , then <math>f \in h_r^p(\Omega)$ iff the function f has the atomic decompositon, that is

$$f(x) = \sum \lambda_I a_I + \sum \lambda_{II} a_{II} + \sum \lambda_{III} a_{III}$$
 in $D'(\Omega)$

where a_I (respectively a_{II}, a_{III}) is (p,I)-atom (respectively (p, II)-atom, (p,III)-atom), and $\sum |\lambda_I|^p + \sum |\lambda_{II}|^p + \sum |\lambda_{III}|^p < \infty$.

For $\alpha \in (0, \infty)$, let $\Lambda_{\alpha}(\mathbb{R}^n)$ denote the inhomogeneous Lipschitz spaces ([5] or see it in the first section), and let

$$C^{\alpha}(\bar{\Omega}) := \{u \text{ is continuous function} : \exists F \in \Lambda^{\alpha}(\mathbb{R}^n), s.t.u = F|_{\bar{\Omega}}\}$$

 $C_0^{\alpha}(\Omega) := \{u \in C_{\alpha}(\bar{\Omega}) : u|_{\partial\Omega} = 0\}$

We have the dual theorem as follows:

Theorem 3 Let $\Omega \in ER(n)$, $n/(n+1) , <math>\alpha = n(1/p-1)$, we have the dual theorem: $(h_r^p(\Omega))^* = C_0^{\alpha}(\Omega)$.

Let $L = -\partial_i(a_{ij}(x)\partial_i)$ be uniformly elliptic operator, i.e. $\exists \lambda > 0, \forall x \in \Omega$, satisfies the following:

(1) $a_{ij}(x) = a_{ji}(x) \in L^{\infty}(\Omega)$ is real-valued and measurable function; (2) $\lambda^{-1}|\xi|^2 \leq \sum_i a_{ij}(x)\xi_i\xi_0 \leq \lambda|\xi|^2, \forall \xi \in \mathbb{R}^n$.

We know that there is a Green function G(x, y) for uniformly elliptic operator in the domain $\Omega \times \Omega \setminus \{(x, y) : x, y \in \Omega, x = y\}$ (See [6]).

Definition 4 For a function $f \in h_r^p(\Omega)$, we say that $u \in L^1(\Omega)$ is a weak solution of the equation Lu = f vanishing at the boundary Ω if it satisfies:

$$\int_{\Omega} uL\Phi dx = \langle f, \Phi \rangle$$