Volume 20, Issue 4
Polar Coordinates for the Generalized Baouendi-Grushin Operator and Applications

Jingbo Dou , Pengcheng Niu & Junqiang Han

DOI:

J. Part. Diff. Eq., 20 (2007), pp. 322-336.

Published online: 2007-11

Preview Full PDF 4 395
Export citation
  • Abstract

In this parer, by using the polar coordinates for the generalized Baouendi- Grushin operator L_α = \sum^n_{i=1}\frac{∂²}{∂x²_i} + \sum^m_{j=1}|x|^{2α} \frac{∂²}{∂y²_j}, where x = (x_1, x_2, …, x_n) ∈ \mathbb{R}^n, y = (y_1, y_2, …, y_m) ∈ \mathbb{R}^m, α › 0, we obtain the volume of the ball associated to L_α and prove the nonexistence for a second order evolution inequality which is relative to L_α.

  • Keywords

Generalized Baouendi-Grushin operator polar coordinate nonexistence second order evolution inequality

  • AMS Subject Headings

35R45 35J60.

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • References
  • Hide All
    View All

@Article{JPDE-20-322, author = {}, title = {Polar Coordinates for the Generalized Baouendi-Grushin Operator and Applications}, journal = {Journal of Partial Differential Equations}, year = {2007}, volume = {20}, number = {4}, pages = {322--336}, abstract = { In this parer, by using the polar coordinates for the generalized Baouendi- Grushin operator L_α = \sum^n_{i=1}\frac{∂²}{∂x²_i} + \sum^m_{j=1}|x|^{2α} \frac{∂²}{∂y²_j}, where x = (x_1, x_2, …, x_n) ∈ \mathbb{R}^n, y = (y_1, y_2, …, y_m) ∈ \mathbb{R}^m, α › 0, we obtain the volume of the ball associated to L_α and prove the nonexistence for a second order evolution inequality which is relative to L_α.}, issn = {2079-732X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jpde/5312.html} }
Copy to clipboard
The citation has been copied to your clipboard