TY - JOUR T1 - Polar Coordinates for the Generalized Baouendi-Grushin Operator and Applications AU - Jingbo Dou , Pengcheng Niu & Junqiang Han JO - Journal of Partial Differential Equations VL - 4 SP - 322 EP - 336 PY - 2007 DA - 2007/11 SN - 20 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jpde/5312.html KW - Generalized Baouendi-Grushin operator KW - polar coordinate KW - nonexistence KW - second order evolution inequality AB - In this parer, by using the polar coordinates for the generalized Baouendi- Grushin operator L_α = \sum^n_{i=1}\frac{∂²}{∂x²_i} + \sum^m_{j=1}|x|^{2α} \frac{∂²}{∂y²_j}, where x = (x_1, x_2, …, x_n) ∈ \mathbb{R}^n, y = (y_1, y_2, …, y_m) ∈ \mathbb{R}^m, α › 0, we obtain the volume of the ball associated to L_α and prove the nonexistence for a second order evolution inequality which is relative to L_α.