@Article{JPDE-20-322,
author = {Jingbo Dou and Pengcheng Niu and Junqiang Han },
title = {Polar Coordinates for the Generalized Baouendi-Grushin Operator and Applications},
journal = {Journal of Partial Differential Equations},
year = {2007},
volume = {20},
number = {4},
pages = {322--336},
abstract = { In this parer, by using the polar coordinates for the generalized Baouendi- Grushin operator L_α = \sum^n_{i=1}\frac{∂²}{∂x²_i} + \sum^m_{j=1}|x|^{2α} \frac{∂²}{∂y²_j}, where x = (x_1, x_2, …, x_n) ∈ \mathbb{R}^n, y = (y_1, y_2, …, y_m) ∈ \mathbb{R}^m, α › 0, we obtain the volume of the ball associated to L_α and prove the nonexistence for a second order evolution inequality which is relative to L_α.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5312.html}
}