@Article{JPDE-20-322, author = {Jingbo Dou , Pengcheng Niu and Junqiang Han }, title = {Polar Coordinates for the Generalized Baouendi-Grushin Operator and Applications}, journal = {Journal of Partial Differential Equations}, year = {2007}, volume = {20}, number = {4}, pages = {322--336}, abstract = { In this parer, by using the polar coordinates for the generalized Baouendi- Grushin operator L_α = \sum^n_{i=1}\frac{∂²}{∂x²_i} + \sum^m_{j=1}|x|^{2α} \frac{∂²}{∂y²_j}, where x = (x_1, x_2, …, x_n) ∈ \mathbb{R}^n, y = (y_1, y_2, …, y_m) ∈ \mathbb{R}^m, α › 0, we obtain the volume of the ball associated to L_α and prove the nonexistence for a second order evolution inequality which is relative to L_α.}, issn = {2079-732X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jpde/5312.html} }