- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cauchy Problem for a Class of Totally Characteristic Hyperbolic Operators with Characteristics of Variable Multiplicity in Gevrey Classes
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-1-31,
author = {Chen Hua},
title = {Cauchy Problem for a Class of Totally Characteristic Hyperbolic Operators with Characteristics of Variable Multiplicity in Gevrey Classes},
journal = {Journal of Partial Differential Equations},
year = {1988},
volume = {1},
number = {1},
pages = {31--41},
abstract = { This paper studies tho Cauchy problem of totally characteristic hyperbolic operator (1.1) in Gevrey classes, and obtains the following main result: Under the conditions (I) - (VI), if 1 ≤ s < \frac{σ}{σ-1} (σ is definded by (1.7)). then the Cauchy problem (1.1) is wellposed in B ([0, T], G^s_{L²}, (R^n)); if s = \frac{σ}{σ-1}, then the Cauchy problem (1.1) is wellpooed in B ([0, e], G^{\frac{σ}{σ-1}}_{L²}(R^n)) (where e > 0, small enough). },
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5850.html}
}
TY - JOUR
T1 - Cauchy Problem for a Class of Totally Characteristic Hyperbolic Operators with Characteristics of Variable Multiplicity in Gevrey Classes
AU - Chen Hua
JO - Journal of Partial Differential Equations
VL - 1
SP - 31
EP - 41
PY - 1988
DA - 1988/01
SN - 1
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5850.html
KW -
AB - This paper studies tho Cauchy problem of totally characteristic hyperbolic operator (1.1) in Gevrey classes, and obtains the following main result: Under the conditions (I) - (VI), if 1 ≤ s < \frac{σ}{σ-1} (σ is definded by (1.7)). then the Cauchy problem (1.1) is wellposed in B ([0, T], G^s_{L²}, (R^n)); if s = \frac{σ}{σ-1}, then the Cauchy problem (1.1) is wellpooed in B ([0, e], G^{\frac{σ}{σ-1}}_{L²}(R^n)) (where e > 0, small enough).
Chen Hua. (1988). Cauchy Problem for a Class of Totally Characteristic Hyperbolic Operators with Characteristics of Variable Multiplicity in Gevrey Classes.
Journal of Partial Differential Equations. 1 (1).
31-41.
doi:
Copy to clipboard