- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Long-time Asymptotic Behavior of Lax-Friedrichs Scheme
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-6-39,
author = {Ying Lungan, Zhou Tie},
title = {Long-time Asymptotic Behavior of Lax-Friedrichs Scheme},
journal = {Journal of Partial Differential Equations},
year = {1993},
volume = {6},
number = {1},
pages = {39--61},
abstract = { In this paper we investigate the asymptotic stability of the discrete shocks of the Lax-Friedrichs scheme for hyperholic systems of conservation laws. For single equations, we show that the discrete shocks of the Lax-Friedrichs scheme are asymptotically stable in the sense of I³ and I¹. For the systems of conservation laws, if the summation of initial perturbations equals to zero, we show the l² stability and l¹ boundedness.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5699.html}
}
TY - JOUR
T1 - Long-time Asymptotic Behavior of Lax-Friedrichs Scheme
AU - Ying Lungan, Zhou Tie
JO - Journal of Partial Differential Equations
VL - 1
SP - 39
EP - 61
PY - 1993
DA - 1993/06
SN - 6
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5699.html
KW - Lax-Friedrichs scheme
KW - discrete travelling waves
KW - asymptotic stability
KW - hyperbolic conservation laws
KW - energy method
AB - In this paper we investigate the asymptotic stability of the discrete shocks of the Lax-Friedrichs scheme for hyperholic systems of conservation laws. For single equations, we show that the discrete shocks of the Lax-Friedrichs scheme are asymptotically stable in the sense of I³ and I¹. For the systems of conservation laws, if the summation of initial perturbations equals to zero, we show the l² stability and l¹ boundedness.
Ying Lungan, Zhou Tie. (1993). Long-time Asymptotic Behavior of Lax-Friedrichs Scheme.
Journal of Partial Differential Equations. 6 (1).
39-61.
doi:
Copy to clipboard