arrow
Volume 7, Issue 4
On Initial-boundary-value Problems for a Class of Systems of Quasi-linear Evolution Equations

Cheng Yan

J. Part. Diff. Eq.,7(1994),pp.339-350

Published online: 1994-07

Export citation
  • Abstract
In this paper the initial-boundary-value problems for pseudo-hyperbolic system of quasi-linear equations: {(-1)^Mu_{tt} + A(x, t, U, V)u_x^{2M}_{tt} = B(x, t, U, V)u_x^{2M}_{t} + C(x, t, U, V)u_x^{2M} + f(x, t, U, V) u_x^k(0,t) = ψ_{0k}(t), \quad u_x^k(l,t) = ψ_{lk}(t), \quad k = 0,1,…,M - 1 -u(x,0) = φ_0(x), \quad u_t(x,0) = φ_1(x) is studied, where U = (u_1, u_x,…,u_x^{2M - 1}) V = (u_t, u_{xt},…,u_x^{2M - 1_t}), A, B, C are m × m matrices, u, f, ψ_{0k}, ψ_{1k}, ψ_0, ψ_1 are m-dimensional vector functions. The existence and uniqueness of the generalized solution (in H² (0, T; H^{2M} (0, 1))) of the problems are proved.
  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JPDE-7-339, author = {Cheng Yan}, title = {On Initial-boundary-value Problems for a Class of Systems of Quasi-linear Evolution Equations}, journal = {Journal of Partial Differential Equations}, year = {1994}, volume = {7}, number = {4}, pages = {339--350}, abstract = { In this paper the initial-boundary-value problems for pseudo-hyperbolic system of quasi-linear equations: {(-1)^Mu_{tt} + A(x, t, U, V)u_x^{2M}_{tt} = B(x, t, U, V)u_x^{2M}_{t} + C(x, t, U, V)u_x^{2M} + f(x, t, U, V) u_x^k(0,t) = ψ_{0k}(t), \quad u_x^k(l,t) = ψ_{lk}(t), \quad k = 0,1,…,M - 1 -u(x,0) = φ_0(x), \quad u_t(x,0) = φ_1(x) is studied, where U = (u_1, u_x,…,u_x^{2M - 1}) V = (u_t, u_{xt},…,u_x^{2M - 1_t}), A, B, C are m × m matrices, u, f, ψ_{0k}, ψ_{1k}, ψ_0, ψ_1 are m-dimensional vector functions. The existence and uniqueness of the generalized solution (in H² (0, T; H^{2M} (0, 1))) of the problems are proved.}, issn = {2079-732X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jpde/5692.html} }
TY - JOUR T1 - On Initial-boundary-value Problems for a Class of Systems of Quasi-linear Evolution Equations AU - Cheng Yan JO - Journal of Partial Differential Equations VL - 4 SP - 339 EP - 350 PY - 1994 DA - 1994/07 SN - 7 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jpde/5692.html KW - Pseudo-hyperbolic system of quasi-linear equations of higher order AB - In this paper the initial-boundary-value problems for pseudo-hyperbolic system of quasi-linear equations: {(-1)^Mu_{tt} + A(x, t, U, V)u_x^{2M}_{tt} = B(x, t, U, V)u_x^{2M}_{t} + C(x, t, U, V)u_x^{2M} + f(x, t, U, V) u_x^k(0,t) = ψ_{0k}(t), \quad u_x^k(l,t) = ψ_{lk}(t), \quad k = 0,1,…,M - 1 -u(x,0) = φ_0(x), \quad u_t(x,0) = φ_1(x) is studied, where U = (u_1, u_x,…,u_x^{2M - 1}) V = (u_t, u_{xt},…,u_x^{2M - 1_t}), A, B, C are m × m matrices, u, f, ψ_{0k}, ψ_{1k}, ψ_0, ψ_1 are m-dimensional vector functions. The existence and uniqueness of the generalized solution (in H² (0, T; H^{2M} (0, 1))) of the problems are proved.
Cheng Yan. (1994). On Initial-boundary-value Problems for a Class of Systems of Quasi-linear Evolution Equations. Journal of Partial Differential Equations. 7 (4). 339-350. doi:
Copy to clipboard
The citation has been copied to your clipboard