ON INITIAL-BOUNDARY-VALUE PROBLEMS FOR A CLASS OF SYSTEMS OF QUASI-LINEAR EVOLUTION EQUATIONS

Cheng Yan

(Department of Math., Hebei Normal University, Shijiazhuang 050016, China) (Received May 19, 1992; revised Sept. 21, 1992)

Abstract In this paper the initial-boundary-value problems for pseudo-hyperbolic system of quasi-linear equations:

$$\begin{cases} (-1)^{M}u_{tt} + A(x,t,U,V)u_{x^{2M}tt} = B(x,t,U,V)u_{x^{2M}t} + C(x,t,U,V)u_{x^{2M}} + f(x,t,U,V) \\ u_{x^{k}}(0,t) = \psi_{0k}(t), \quad u_{x^{k}}(l,t) = \psi_{1k}(t), \quad k = 0,1,\cdots,M-1 \\ u(x,0) = \varphi_{0}(x), \quad u_{t}(x,0) = \varphi_{1}(x) \end{cases}$$

is studied, where $U=(u,u_x,\cdots,u_{x^{2M-1}}), V=(u_t,u_{xt},\cdots,u_{x^{2M-1}t}), A,B,C$ are $m\times m$ matrices, $u,f,\psi_{0k},\psi_{1k},\varphi_0,\varphi_1$ are m-dimensional vector functions. The existence and uniqueness of the generalized solution (in $H^2(0,T;H^{2M}(0,l))$) of the problems are proved.

Key Words Pseudo-hyperbolic system of quasi-linear equations of higher order.
Classification 35S.

1. Formulation of the Problems

In mathematical physics various problems for systems of quasi-linear differential equations of higher order are posed and considered, for example, see [1–2].

The problem to be considered in this paper is the initial-boundary-value problem for the system of quasi-linear pseudo-hyperbolic differential equations of higher order in the space $H^2(0,T;H^{2M}(0,l))$

$$\begin{cases} (-1)^{M} u_{tt} + A(x, t, U, V) u_{x^{2M}tt} = B(x, t, U, V) u_{x^{2M}t} \\ + C(x, t, U, V) u_{x^{2M}} + f(x, t, U, V) \\ u_{x^{k}}(0, t) = \psi_{0k}(t), \quad u_{x^{k}}(l, t) = \psi_{1k}(t), \quad k = 0, 1, \dots, M - 1 \\ u(x, 0) = \varphi_{0}(x), \quad u_{t}(x, 0) = \varphi_{1}(x) \end{cases}$$

$$(1)$$

$$(2)$$

$$(3)$$

where A(x,t,U,V), B(x,t,U,V) and C(x,t,U,V) are $m \times m$ matrices, f(x,t,U,V) is a m-dimensional vector function, $\psi_{0k}(t), \psi_{1k}(t)$ $(k=0,1,\cdots,M-1)$ and $\varphi_0(x), \varphi_1(x)$ are m-dimensional vector functions of $t \in [0,T]$ and $x \in [0,l]$ respectively. $U = (u, u_x, \cdots, u_{x^{2M-1}}), V = (u_t, u_{xt}, \cdots, u_{x^{2M-1}t}).$

2. The Initial-Boundary-Value Problems for Equations with Constant Coefficients

We consider the initial-boundary-value problems for

$$\begin{cases}
(-1)^{M} u_{tt} + a_{0} u_{x^{2M}tt} = f(x, t), & 0 < t \le T, & 0 < x < l \\
u_{x^{k}}(0, t) = \psi_{0k}(t), & u_{x^{k}}(l, t) = \psi_{1k}(t), & k = 0, 1, \dots, M - 1 \\
u(x, 0) = \varphi_{0}(x), & u_{t}(x, 0) = \varphi_{1}(x), & a_{0} = \text{const} > 0
\end{cases}$$
(4)

$$u_{x^k}(0,t) = \psi_{0k}(t),$$
 $u_{x^k}(l,t) = \psi_{1k}(t), \quad k = 0, 1, \dots, M-1$ (5)

$$u(x,0) = \varphi_0(x),$$
 $u_t(x,0) = \varphi_1(x), \quad a_0 = \text{const} > 0$ (6)

Theorem 1 Let $f(x,t) \in L_2(Q_T), \psi_{0k}(t), \psi_{1k}(t) \in H^2(0,T)$ and $\varphi_0(x), \varphi_1(x) \in$ $H^{2M}(0,l)$ such that

$$\varphi_0^{(k)}(0) = \psi_{0k}(0), \quad \varphi_0^{(k)}(l) = \psi_{1k}(0) \quad \varphi_1^{(k)}(0) = \psi'_{0k}(0), \quad \varphi_1^{(k)}(l) = \psi'_{1k}(0),$$

$$k = 0, 1, \dots, M - 1$$

$$(7)$$

Then, the problems (4), (5) and (6) have precisely one generalized solution $u(x,t) \in$ $H^2(0,T;H^{2M}(0,l))$ which satisfies the condition (4) in the generalized sense and the conditions (5), (6) in the classical sense. Furthermore, the following estimate holds

$$||u||_{H^{2}(0,T;H^{2M}(0,l))} \leq K_{1}\{||f||_{L^{2}(Q_{T})} + ||\varphi_{0}||_{H^{2M}(0,l)} + ||\varphi_{1}||_{H^{2M}(0,l)} + \sum_{k=0}^{M-1} (||\psi_{0k}||_{H^{2}(0,T)} + ||\psi_{1k}||_{H^{2}(0,T)})\}K_{1} = \text{const}$$

$$(8)$$

For the proof of Theorem 1 we first prove several lemmas.

Consider the boundary value problems for the equation

$$\begin{cases} (-1)^{M}v + a_{0}v_{x^{2M}} = f(x,t) \\ v_{x^{k}}(0,t) = \psi_{0k}''(t), \quad v_{x^{k}}(l,t) = \psi_{1k}''(t), \quad k = 0, 1, \dots, M-1 \end{cases}$$

$$(9)$$

$$(10)$$

where t is a parameter. Obviously, the problems (9), (10) possess a unique solution in the space $C^{2M,0}(Q_T)$, if $f(x,t) \in C(Q_T)$ and $\psi_{0k}''(t), \psi_{1k}''(t) \in C[0,T]$.

Lemma 2 Consider the initial value problem for ordinary differential equation

$$u_{tt} = v(x, t) \tag{11}$$

with initial condition (6), where $x \in [0, l]$ is a parameter, v(x, t) is a unique solution of problems (9), (10) in the space $C^{2M,0}(Q_T)$.

If $\varphi_0(x), \varphi_1(x) \in C^{2M,0}[0,l]$ satisfy the condition (7), for problem (11), (6) there exists a unique solution in the space $C^{2M,0}(Q_T)$.

Proof $u(x,t) = \varphi_0(x) + \varphi_1(x)t + \int_0^t \int_0^\tau v(x,y)dyd\tau$ (12)