- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
The Fourier Transform and Its Weyl Symbol on Two-step Nilpotent Lie Groups
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-7-183,
author = {Jiang Yaping},
title = {The Fourier Transform and Its Weyl Symbol on Two-step Nilpotent Lie Groups},
journal = {Journal of Partial Differential Equations},
year = {1994},
volume = {7},
number = {2},
pages = {183--192},
abstract = { In this paper, we give all equivalence classes of irreducible unitary representations for the group H_n ⊗ R^m thereby formulate the Fourier transform on H_n ⊗ R^m (n ≥ 0, m ≥ 0}, which naturally unifies the Fourier transform between the Euclidean group and the Heisenberg group, more generally, between Abelian groups and two-step nilpotent Lie groups. Moreover, by the Plancberel formula for H_n ⊗ R^m we produce the Weyl symbol association with functions of the harmonic oscillator so that to derive the heat kernel on H_n ⊗ R^m.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5681.html}
}
TY - JOUR
T1 - The Fourier Transform and Its Weyl Symbol on Two-step Nilpotent Lie Groups
AU - Jiang Yaping
JO - Journal of Partial Differential Equations
VL - 2
SP - 183
EP - 192
PY - 1994
DA - 1994/07
SN - 7
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5681.html
KW - Nilpotent
KW - representation
KW - group-Fourier transform
KW - Weyl symbol
KW - heat kernel
KW - hypoellipticity
AB - In this paper, we give all equivalence classes of irreducible unitary representations for the group H_n ⊗ R^m thereby formulate the Fourier transform on H_n ⊗ R^m (n ≥ 0, m ≥ 0}, which naturally unifies the Fourier transform between the Euclidean group and the Heisenberg group, more generally, between Abelian groups and two-step nilpotent Lie groups. Moreover, by the Plancberel formula for H_n ⊗ R^m we produce the Weyl symbol association with functions of the harmonic oscillator so that to derive the heat kernel on H_n ⊗ R^m.
Jiang Yaping. (1994). The Fourier Transform and Its Weyl Symbol on Two-step Nilpotent Lie Groups.
Journal of Partial Differential Equations. 7 (2).
183-192.
doi:
Copy to clipboard