- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
W2,ploc(\Omega)\cap C1,α(\bar Ω) Viscosity Solutions of Neumann Problems for Fully Nonlinear Elliptic Equations
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-8-219,
author = {Bao , Jiguang},
title = {W2,ploc(\Omega)\cap C1,α(\bar Ω) Viscosity Solutions of Neumann Problems for Fully Nonlinear Elliptic Equations},
journal = {Journal of Partial Differential Equations},
year = {1995},
volume = {8},
number = {3},
pages = {219--232},
abstract = { In this paper we study fully nonlinear elliptic equations F(D²u, x) = 0 in Ω ⊂ R^n with Neumann boundary conditions \frac{∂u}{∂v} = a(x)u under the rather mild structure conditions and without the concavity condition. We establish the global C^{1,Ω} estimates and the interior W^{2,p} estimates for W^{2,q}(Ω) solutions (q > 2n) by introducing new independent variables, and moreover prove the existence of W^{2,p}_{loc}(Ω)∩ C^{1,α}(\bar \Omega} viscosity solutions by using the accretive operator methods, where p E (0, 2), α ∈ (0, 1}.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5654.html}
}
TY - JOUR
T1 - W2,ploc(\Omega)\cap C1,α(\bar Ω) Viscosity Solutions of Neumann Problems for Fully Nonlinear Elliptic Equations
AU - Bao , Jiguang
JO - Journal of Partial Differential Equations
VL - 3
SP - 219
EP - 232
PY - 1995
DA - 1995/08
SN - 8
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5654.html
KW - Viscosity solutions
KW - Neumann boundary conditions
KW - fully nonlinear equations
KW - global C^{1
KW - α} estimates
KW - interior W^{2
KW - p} estimates
AB - In this paper we study fully nonlinear elliptic equations F(D²u, x) = 0 in Ω ⊂ R^n with Neumann boundary conditions \frac{∂u}{∂v} = a(x)u under the rather mild structure conditions and without the concavity condition. We establish the global C^{1,Ω} estimates and the interior W^{2,p} estimates for W^{2,q}(Ω) solutions (q > 2n) by introducing new independent variables, and moreover prove the existence of W^{2,p}_{loc}(Ω)∩ C^{1,α}(\bar \Omega} viscosity solutions by using the accretive operator methods, where p E (0, 2), α ∈ (0, 1}.
Bao , Jiguang. (1995). W2,ploc(\Omega)\cap C1,α(\bar Ω) Viscosity Solutions of Neumann Problems for Fully Nonlinear Elliptic Equations.
Journal of Partial Differential Equations. 8 (3).
219-232.
doi:
Copy to clipboard