- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
On the Radial Ground State of p-Laplacian Equation Involving Super-critical or Critical Exponents
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-13-193,
author = {},
title = {On the Radial Ground State of p-Laplacian Equation Involving Super-critical or Critical Exponents},
journal = {Journal of Partial Differential Equations},
year = {2000},
volume = {13},
number = {3},
pages = {193--206},
abstract = { In this paper, we consider the existence and uniqueness of the radial ground state to the following p-Laplacian equation involving super-critical or critical exponents: Δ_pu + u^q - |Du|^σ = 0, x ∈ R^n, 2 ≤ p < n, q ≥ [n(p - 1) + p]/(n - p), σ > 0. Applying the shooting argument, the Schauder's fixed point theorem and some delicate estimates of auxiliary functions, we study the influence of the parameters n, p, q, σ on the existence and uniqueness of the radial ground state to the above p-Laplacian equation.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5506.html}
}
TY - JOUR
T1 - On the Radial Ground State of p-Laplacian Equation Involving Super-critical or Critical Exponents
JO - Journal of Partial Differential Equations
VL - 3
SP - 193
EP - 206
PY - 2000
DA - 2000/08
SN - 13
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5506.html
KW - p-Laplacian equation
KW - super-critical exponents
KW - critical exponents
KW - radial ground state
KW - shooting argument
AB - In this paper, we consider the existence and uniqueness of the radial ground state to the following p-Laplacian equation involving super-critical or critical exponents: Δ_pu + u^q - |Du|^σ = 0, x ∈ R^n, 2 ≤ p < n, q ≥ [n(p - 1) + p]/(n - p), σ > 0. Applying the shooting argument, the Schauder's fixed point theorem and some delicate estimates of auxiliary functions, we study the influence of the parameters n, p, q, σ on the existence and uniqueness of the radial ground state to the above p-Laplacian equation.
Benjin Xuan & Zuchi Chen . (2019). On the Radial Ground State of p-Laplacian Equation Involving Super-critical or Critical Exponents.
Journal of Partial Differential Equations. 13 (3).
193-206.
doi:
Copy to clipboard