TY - JOUR T1 - On the Radial Ground State of p-Laplacian Equation Involving Super-critical or Critical Exponents AU - Benjin Xuan & Zuchi Chen JO - Journal of Partial Differential Equations VL - 3 SP - 193 EP - 206 PY - 2000 DA - 2000/08 SN - 13 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jpde/5506.html KW - p-Laplacian equation KW - super-critical exponents KW - critical exponents KW - radial ground state KW - shooting argument AB - In this paper, we consider the existence and uniqueness of the radial ground state to the following p-Laplacian equation involving super-critical or critical exponents: Δ_pu + u^q - |Du|^σ = 0, x ∈ R^n, 2 ≤ p < n, q ≥ [n(p - 1) + p]/(n - p), σ > 0. Applying the shooting argument, the Schauder's fixed point theorem and some delicate estimates of auxiliary functions, we study the influence of the parameters n, p, q, σ on the existence and uniqueness of the radial ground state to the above p-Laplacian equation.