- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Anisotropic Parabolic Equations with Measure Data
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-14-21,
author = {Fengquan Li and Huixiu Zhao },
title = {Anisotropic Parabolic Equations with Measure Data},
journal = {Journal of Partial Differential Equations},
year = {2001},
volume = {14},
number = {1},
pages = {21--30},
abstract = { In this paper, we prove the existence of solutions to anisotropic parabolic equations with right hand side term in the bounded Radon measure M(Q) and the initial condition in M(Ω) or in L^m space (with m “small”).},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5466.html}
}
TY - JOUR
T1 - Anisotropic Parabolic Equations with Measure Data
AU - Fengquan Li & Huixiu Zhao
JO - Journal of Partial Differential Equations
VL - 1
SP - 21
EP - 30
PY - 2001
DA - 2001/02
SN - 14
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5466.html
KW - Anisotropic parabolic equations
KW - measure data
AB - In this paper, we prove the existence of solutions to anisotropic parabolic equations with right hand side term in the bounded Radon measure M(Q) and the initial condition in M(Ω) or in L^m space (with m “small”).
Fengquan Li and Huixiu Zhao . (2001). Anisotropic Parabolic Equations with Measure Data.
Journal of Partial Differential Equations. 14 (1).
21-30.
doi:
Copy to clipboard