- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
A In this paper, we employ both bifurcation method of dynamical systems and numerical exploration of differential equations to investigate the periodic waves of a general compressible hyperelastic rod equation u_t+3uu_x-u_{xxt}-ϒ(2u_xu_{xx}+uu_{xxx})=0, with parameter ϒ ‹ 0. New expressions including explicit expressions and implicit expressions are obtained. Some previous results are extended. Specially, a new phenomenon is found: when the initial value tends to a certain number, the periodic shock wave suddenly changes into a smooth periodic wave. In dynamical systems, this represents that one of orbits can pass through the singular line. The coherency of numerical simulation and theoretical derivation implies the correctness of our results.
}, issn = {2079-732X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jpde/5295.html} }A In this paper, we employ both bifurcation method of dynamical systems and numerical exploration of differential equations to investigate the periodic waves of a general compressible hyperelastic rod equation u_t+3uu_x-u_{xxt}-ϒ(2u_xu_{xx}+uu_{xxx})=0, with parameter ϒ ‹ 0. New expressions including explicit expressions and implicit expressions are obtained. Some previous results are extended. Specially, a new phenomenon is found: when the initial value tends to a certain number, the periodic shock wave suddenly changes into a smooth periodic wave. In dynamical systems, this represents that one of orbits can pass through the singular line. The coherency of numerical simulation and theoretical derivation implies the correctness of our results.