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Abstract A In this paper, we employ both bifurcation method of dynamical sys-
tems and numerical exploration of differential equations to investigate the periodic
waves of a general compressible hyperelastic rod equation

ut + 3uux − uxxt − γ(2uxuxx + uuxxx) = 0,

with parameter γ < 0. New expressions including explicit expressions and implicit
expressions are obtained. Some previous results are extended. Specially, a new phe-
nomenon is found: when the initial value tends to a certain number, the periodic shock
wave suddenly changes into a smooth periodic wave. In dynamical systems, this repre-
sents that one of orbits can pass through the singular line. The coherency of numerical
simulation and theoretical derivation implies the correctness of our results.
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1. Introduction

Many authors have studied nonlinear waves in elastic rods. For instance, Wright [1]
considered traveling waves in a rod composed of an incompressible hyperelastic mate-
rial. Samsonov [2] obtained the so-called double dispersive equation and showed that
it has a solitary wave solution. Coleman and Newman [3] derived the one-dimensional
rod equation for a general incompressible hyperelastic material. Dai [4] studied distur-
bances in an initially stretched or compressed rod which is composed of a compressible
Mooney-Rivlin material and derived a new type of nonlinear dispersive equation as the
model equation which takes the following form:

ut + 3uux − uxxt − γ(2uxuxx + uuxxx) = 0, (1.1)

*Research is supported by the National Natural Science Foundation of China (No.10571062).
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where γ is a physical parameter. Dai and Huo [5, 6] used phase portraits of traveling
wave system to show that Eq.(1.1) has a variety of travelling waves, including solitary
shock waves, solitary waves, periodic shock waves, etc. Also a new phenomenon was
found in [5]: a solitary wave can suddenly change into a periodic wave (with finite
period). In dynamical systems, this represents that a homoclinic orbit suddenly changes
into a closed orbit. Constantin and Strauss [7] proved that the solitary waves of Eq.(1.1)
are orbitally stable, which establish that the shape of the waves are stable. Yin [8]
studied the Cauchy problem of Eq.(1.1). Liu and Chen [9] got some implicit expressions
of the compactons for Eq.(1.1), which include Jacobian elliptic functions. Dai et al [10]
provided some theoretical results to deal with singular solutions and obtained an explicit
expression of the compactons for Eq.(1.1).

With γ = 1 in Eq.(1.1), we find Camassa-Holm equation which has been studied
successively by many authors; see for instance Camassa & Holm [11], Constantin et al
[12-15], Lenells [16- 18], Wazwaz [19, 20], Liu and Wang [21]. When γ = 0, Eq.(1.1)
becomes the BBM equation [22], a well-known model for surface waves in a channel.

Recently, bifurcation method of dynamical systems has been used to investigate the
nonlinear waves of some partial differential equations; see for instance Li and Liu [23,
24], Liu et al [25- 27], Tang et al [28, 29].

In this paper, we employ the bifurcation method of dynamical systems and numer-
ical exploration to study the periodic waves of Eq.(1.1) with parameter γ < 0. Firstly,
we derive travelling wave equation and system. Then we draw bifurcation curves and
bifurcation phase portraits of the travelling wave system. From the bifurcation phase
portraits one can see all the closed orbits. By using these closed orbits, the implicit
expressions or explicit expressions of periodic waves are obtained. Our work extends
previous results.

Specially we find another new phenomenon in Eq.(1.1): When the initial value tends
to a certain number, the periodic shock wave suddenly changes into a smooth periodic
wave. In dynamical systems, this represents that one of orbits can pass through the
singular line (see orbit Γ in Fig.1 (I)). We give not only theoretical derivation, but
also numerical simulation. The coherency of the consequences deduced from these two
methods implies the correctness of our conclusions.

This paper is organized as follows. In Section 2, we give a preliminary. Our main
results and two sets of graphs of implicit functions and explicit functions are given in
Section 3. We arrange the theoretic derivation of our main results in Section 4. In
Section 5, two sets of numerical simulations are displayed to test the correctness of our
theoretic derivation. A short conclusion is also given in this section.

2. Preliminary

In this section, firstly we derive travelling wave equation and system. Then we draw
the bifurcation curves and bifurcation phase portraits of the travelling wave system.
These phase portraits will be used to obtain our main results.
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Now we substitute u = ϕ(ξ) into Eq.(1.1), where ξ = x − ct and c is an arbitrary
constant. We get

−cϕ′ + 3ϕϕ′ + cϕ′′′ − γ(2ϕ′ϕ′′ + ϕϕ′′′) = 0. (2.1)

Integrating (2.1) once, we have travelling wave equation

ϕ′′(γϕ− c) = 3ϕ2/2− cϕ + g − γ(ϕ′)2/2, (2.2)

where g is an arbitrary constant.
Letting y = ϕ′, we obtain travelling wave system

dϕ

dξ
= y,

dy

dξ
=

3
2ϕ2 − cϕ + g − γ

2y2

γϕ− c
, (2.3)

with first integral

H(ϕ, y) = (γϕ− c)y2 − ϕ3 + cϕ2 − 2gϕ = h. (2.4)

In the coming sections we will use the phase portraits of the system (2.3) to construct
our results.

Note that the system (2.3) has a singular line ϕ = c/γ which is inconvenient to our
study. Thus we make transformation dτ = dξ/(γϕ− c). Under this transformation the
system (2.3) becomes the following Hamiltonian system

dϕ

dτ
= (γϕ− c)y,

dy

dτ
=

3
2
ϕ2 − cϕ + g − γ

2
y2, (2.5)

which has the same first integral as the system (2.3). Therefore (2.3) and (2.5) have
the same topological phase portraits except the singular line ϕ = c/γ. This implies
that one can get the topological phase portraits of the system (2.3) from that of the
system (2.5).

Now we consider the system (2.5). In the following lemma the properties of the
singular points and some inequalities will be pointed out.

Lemma l For given parameter γ < 0 and arbitrary constant c, let

q =
c

γ
, (2.6)

g1(c) =
2γ − 3
2γ2

c2, (2.7)

g2(c) =
(γ − 1)(γ + 3)

8γ2
c2, (2.8)

g3(c) =
c2

6
, (2.9)

ϕ0
± =

(
c±

√
c2 − 6g

)
/3 for g ≤ g3(c), (2.10)
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ϕ∗± =
(
c± 2

√
c2 − 6g

)
/3 for g ≤ g3(c), (2.11)

ϕ± =

(
c(γ − 1)±

√
γ2(c2 − 8g) + c2(2γ − 3)

)

2γ
. for g ≤ g2(c), (2.12)

y0
± = ±

√
1
γ3

(3c2 − 2γc2 + 2γ2g) for g ≤ g1(c), (2.13)

f1(ϕ) = 3ϕ2/2− cϕ + g, (2.14)

f2(ϕ) = ϕ3 − 3ϕ2 + 2gϕ. (2.15)

Then we have the following inequalities and properties:
(1) g1(c), g2(c) and g3(c) have a unique intersection point (0, 0) and

g1(c) < g2(c) < g3(c) for c 6= 0. (2.16)

(2) ϕ0
+ and ϕ0− are the roots of the equation f1(ϕ) = 0. ϕ∗+ is a root of the equation

f2(ϕ) + H(ϕ0−, 0) = 0. ϕ∗− is a root of the equation f2(ϕ) + H(ϕ0
+, 0) = 0. ϕ+ is a root

of the equation f2(ϕ)+H(ϕ−, 0) = 0, ϕ− is a root of the equation f2(ϕ)+H(ϕ+, 0) = 0,
y0
+ and y0− are the roots of the equation γ

2y2 − f1(q) = 0.
(3) For any c, if g < g1(c), then (2.5) has four singular points (ϕ0−, 0), (ϕ0

+, 0),
(q, y0−) and (q, y0

+). (ϕ0−, 0) and (ϕ0
+, 0) are two center points surrounded by a family

of closed orbits respectively. (q, y0−) and (q, y0
+) are two saddle points connected by two

heteroclinic orbits which pass (ϕ+, 0) and (ϕ−, 0) respectively. ϕ0±, ϕ∗± and ϕ± satisfy
that

ϕ∗− < ϕ+ < ϕ0
− < q < ϕ0

+ < ϕ− < ϕ∗+. (2.17)

Let Γ denote the closed curve composed by two heteroclinic orbits, Γ∗ denote the
closed orbits surrounding (ϕ0−, 0), Γ0 denote the closed orbits surrounding (ϕ0

+, 0) (see
Fig.1 (I)).

(4) If c 6= 0 and g = g1(c), then (2.5) has two singular points (ϕ0−, 0), (ϕ0
+, 0).

When c < 0, (ϕ0−, 0) is a center point surrounded by a family of closed orbits, and
(ϕ0

+, 0) is connected by a singular closed orbit Γ which passes (ϕ+, 0). ϕ0±, ϕ∗± and ϕ±
satisfy that

ϕ∗− = ϕ+ < ϕ0
− < ϕ0

+ = ϕ− = q < ϕ∗+. (2.18)

Let Γ∗ denote the closed orbits surrounding (ϕ0−, 0), (see Fig.1 (D)).
When c > 0, (ϕ0

+, 0) is a center point surrounded by a family of closed orbits, and
(ϕ0−, 0) is connected by a singular closed orbit Γ which passes (ϕ−, 0). ϕ0±, ϕ∗± and ϕ±
satisfy that

ϕ∗− < q = ϕ0
− = ϕ+ < ϕ0

+ < ϕ− = ϕ∗+. (2.19)

Let Γ0 denote the closed orbits surrounding (ϕ0
+, 0) (see Fig.1 (H)).

(5) If c < 0 and g1(c) < g < g3(c), then (2.5) has two singular points (ϕ0−, 0) and
(ϕ0

+, 0). (ϕ0−, 0) is a center point surrounded by a family of closed orbits. (ϕ0
+, 0) is
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a saddle point connected by a homoclinic orbit which passes (ϕ∗−, 0). ϕ0±, ϕ∗± and ϕ±
satisfy that

ϕ∗− < ϕ+ < ϕ0
− < ϕ− < ϕ0

+ < q < ϕ∗+ for g1(c) < g < g2(c). (2.20)

ϕ∗− < ϕ+ = ϕ0
− = ϕ− < ϕ0

+ < ϕ∗+ = q for g = g2(c), (2.21)

and

ϕ∗− < ϕ0
− < ϕ0

+ < ϕ∗+ < q for g2(c) < g < g3(c) (ϕ− and ϕ+ vanish). (2.22)

Let Γ denote the closed orbit passing (ϕ+, 0) (we will show that Γ passes (ϕ−, 0)
too), Γ∗∗ denote the closed orbits locating outside Γ, Γ∗ denote the closed orbits locating
inside Γ. When g1(c) < g < g2(c), Γ, Γ∗ and Γ∗∗ exist (see Fig.1 (C)). When g2(c) ≤
g < g3(c), Γ and Γ∗ vanish, Γ∗∗ exist (see Fig.1 (A), (B)).

(6) If c > 0 and g1(c) < g < g3(c), then (2.5) has two singular points (ϕ0−, 0)
and (ϕ0

+, 0). (ϕ0−, 0) is a saddle point connected with a homoclinic orbit which passes
(ϕ∗+, 0). (ϕ0

+, 0) is a center point surrounded by a family of closed orbits. ϕ0±, ϕ∗± and
ϕ± satisfy that

ϕ∗− < q < ϕ0
− < ϕ+ < ϕ0

+ < ϕ− < ϕ∗+ for g1(c) < g < g2(c). (2.23)

ϕ∗− = q < ϕ0
− < ϕ0

+ = ϕ− = ϕ+ < ϕ∗+ for g = g2(c), (2.24)

and

q < ϕ∗− < ϕ0
− < ϕ0

+ < ϕ∗+ and g2(c) < g < g3(c) (ϕ− and ϕ+ vanish). (2.25)

Let Γ denote the closed orbit passing (ϕ+, 0) (we will show that Γ passes (ϕ−, 0)
too), Γ00 denote the closed orbits locating outside Γ, Γ0 denote the closed orbits locating
inside Γ. When g1(c) < g < g2(c), Γ, Γ0 and Γ00 exist (see Fig.1 (G)). When g2(c) ≤
g < g3(c), Γ and Γ0 vanish, Γ00 exist (see Fig.1 (E), (F)).

(7) For any c, if g = g3(c), then (2.5) has a unique singular point (0, c/3) which
is a degenerate saddle point. ϕ0

+ and ϕ0− satisfy that

ϕ0
+ = ϕ0

− = c/3 < q for c < 0, (2.26)

and
ϕ0

+ = ϕ0
− = c/3 > q for c > 0. (2.27)

(8) For any c, if g > g3(c), then (2.5) has no singular point.

On the basis of Lemma 1 we draw the bifurcation curves and phase portraits of
systems (2.3) and (2.5) as Fig.1.
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Fig.1. Bifurcation curves and bifurcation phase portraits of systems (2.3) and (2.5) for γ < 0.
(The topological phase portraits of systems (2.3) and (2.5) are the same except the line ϕ = q)

Proof From (2.7)-(2.9) we have

g3(c)− g2(c) =
(γ − 3)2c2

24γ2
, (2.28)

and

g2(c)− g1(c) =
(γ − 3)2c2

8γ2
. (2.29)

Note that γ < 0. This implies that the inequality (2.16) holds and three curves
g = gi(c)(i = 1, 2, 3) have a unique intersection point (0, 0).

From the solutions of equations
{

(γϕ− c)y = 0,

f1(ϕ)− γ
2y2 = 0,

(2.30)
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we see that the statements about the number and distribution of the singular points
are true.

If λ±(ϕ0±, 0) and λ±(q, y0±) respectively denote the eigenvalues of the linearized
system of (2.5) at the singular points (ϕ0±, 0) and (q, y0±), then we have

λ±(ϕ0
−, 0) = ±

√
γ(ϕ0− − q)f ′1(ϕ

0−), (2.31)

λ±(ϕ0
+, 0) = ±

√
γ(ϕ0

+ − q)f ′1(ϕ
0
+), (2.32)

and
λ±(q, y0

−) = λ±(q, y0
+) = ±|γy0

±|, (2.33)

Note that ϕ0− and ϕ0
+ are the two roots of f1(ϕ) and ϕ0− < ϕ0

+. Thus we have

f ′1(ϕ
0
−) < 0 and f ′1(ϕ

0
+) > 0. (2.34)

On the other hand, from the expressions (2.10)-(2.12) we obtain equalities and in-
equalities (2.17)-(2.27). Apply (2.17)-(2.27) and (2.34) to (2.31)-(2.32), (2.13) to (2.33),
the signs of λ±(ϕ0−, 0), λ±(ϕ0

+, 0) and λ±(q, y0±) can be determined. According to the
qualitative theory and bifurcation method of dynamical systems (e.g., Guckenheimer
& Holmes [30]), it is seen that the statements about the properties of singular points
are true.

Now let us turn to the implicit expressions of the closed orbits on ϕ−y plane. Notice
that the center points are on ϕ axis. Thus any closed orbit has two intersection points
with ϕ axis. From (2.4) we see that the closed orbit passing (ϕ0, 0) has expression

(γϕ− c)y2 + (ϕ0 − ϕ)(ϕ−m)(ϕ− n) = 0, (2.35)

where

m = m(ϕ0) =
1
2

(
c− ϕ0 +

√
c2 − 8g + 2cϕ0 − 3ϕ2

0

)
, (2.36)

and

n = n(ϕ0) =
1
2

(
c− ϕ0 −

√
c2 − 8g + 2cϕ0 − 3ϕ2

0

)
. (2.37)

About m and n we have the following two special cases:
(i) For c < 0 and g1(c) ≤ g < g2(c), if ϕ0 = ϕ+, then m(ϕ0) = q and n(ϕ0) = ϕ−;

if ϕ0 = ϕ−, then m(ϕ0) = q and n(ϕ0) = ϕ+.
(ii) For c > 0 and g1(c) ≤ g < g2(c), or for any c and g < g1(c), if ϕ0 = ϕ+, then

m(ϕ0) = ϕ− and n(ϕ0) = q; if ϕ0 = ϕ−, then m(ϕ0) = ϕ+ and n(ϕ0) = q.
These imply that when ϕ0 = ϕ+ or ϕ0 = ϕ−, (2.35) becomes

y2 −
∣∣∣∣
1
γ

(ϕ− ϕ+)(ϕ− ϕ−)
∣∣∣∣ = 0. (2.38)

Note that ϕ+ and ϕ− exist for g < g1(c) too. Therefore (2.38) holds for g < g1(c).
From (2.38) we find that there is a special closed orbit Γ passing points (ϕ+, 0) and
(ϕ−, 0). Hereto, the proof is completed.
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3. Main Results and Graphs of Implicit Functions

In this section we will give the expressions of periodic wave solutions and draw
their planar graphs. The expressions contain the sets. One of them is implicit and the
other is explicit. We state them in the following theorem 1 and corollaries.

Theorem 1 For given parameter γ < 0, let c, g, ϕ0 be constants and ξ = x− ct,
sin−1(·) be the inverse function of sine function sin(·), sn−1(·, ·) be the inverse function
of Jacobin elliptic function sn(·, ·), ∏

(·, ·, ·) be Legendre’s incomplete elliptic integral of
the third kind, K(·) be the complete elliptic integral of the first kind. Then we have the
following results:

Result 1 Under one of the two conditions: (i) c < 0, g2(c) ≤ g < g3(c) and
ϕ∗− < ϕ0 < ϕ0− (see Fig.1 (A), (B)), (ii) c < 0, g1(c) < g < g2(c) and ϕ∗− < ϕ0 < ϕ+

(see Fig.1 (C)), Eq.(1.1) has a periodic wave solution u = ϕ(ξ) corresponding to ϕ0 and
its period is 2T1. On (−T1, T1) ϕ possesses implicit expression

k2
1 sn−1

(√
n− ϕ

α2
1(m− ϕ)

, k1

)
+(α2

1−k2
1)

∏(
sin−1

√
n− ϕ

α2
1(m− ϕ)

, α2
1, k1

)
= β1(T1−|ξ|),

for |ξ| < T1, (3.1)

where

k2
1 =

(m− q)(n− ϕ0)
(n− q)(m− ϕ0)

, (3.2)

α2
1 =

n− ϕ0

m− ϕ0
, (3.3)

β1 =
n− ϕ0

2
√

γ(m− ϕ0)(n− q)
, (3.4)

T1 =
[
k2

1K(k1) + (α2
1 − k2

1)
∏(π

2
, α2

1, k1

)]
/β1, (3.5)

and
ϕ0 ≤ ϕ < n < m < q. (3.6)

Result 2 Under one of the two conditions: (i) c > 0, g2(c) ≤ g < g3(c) and
ϕ0

+ < ϕ0 < ϕ∗+ (see Fig.1 (E), (F)), (ii) c > 0, g1(c) < g < g2(c) and ϕ− < ϕ0 < ϕ∗+
(see Fig.1 (G)), Eq.(1.1) has a periodic wave solution u = ϕ(ξ) corresponding to ϕ0

and its period is 2T2. On (−T2, T2), ϕ possesses implicit expression

k2
2 sn−1

(√
ϕ−m

α2
2(ϕ− n)

, k2

)
+(α2

2− k2
2)

∏(
sin−1

√
ϕ−m

α2
2(ϕ− n)

, α2
2, k2

)
= β2(T2− |ξ|),

for |ξ| < T2, (3.7)
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where

k2
2 =

(n− q)(m− ϕ0)
(m− q)(n− ϕ0)

, (3.8)

α2
2 =

m− ϕ0

n− ϕ0
, (3.9)

β2 =
ϕ0 −m

2
√

γ(m− q)(n− ϕ0)
, (3.10)

T2 =
[
k2

2K(k2) + (α2
2 − k2

2)
∏(π

2
, α2

2, k2

)]
/β2, (3.11)

and

q < n < m < ϕ ≤ ϕ0. (3.12)

Result 3 Under one of the two conditions: (i) c < 0, g1(c) ≤ g < g2(c) and
ϕ+ < ϕ0 < ϕ0− (see Fig.1 (C), (D)), (ii) any c, g < g1(c) and ϕ+ < ϕ0 < ϕ0− (see Fig.1
(I)), Eq.(1.1) has a periodic wave solution u = ϕ(ξ) corresponding to ϕ0 and its period
is 2T3. On (−T3, T3), ϕ possesses implicit form

∏(
sin−1

√
n− ϕ

α2
3(q − ϕ)

, α2
3, k3

)
= β3(T3 − |ξ|), for |ξ| < T3, (3.13)

where

k2
3 =

(m− q)(n− ϕ0)
(m− n)(q − ϕ0)

, (3.14)

α2
3 =

n− ϕ0

q − ϕ0
, (3.15)

β3 =

√
(m− n)(q − ϕ0)
2
√−γ(q − n)

, (3.16)

T3 =
∏(π

2
, α2

3, k3

)
/β3, (3.17)

and

ϕ0 ≤ ϕ < n < q < m. (3.18)

Result 4 Under one of the two conditions: (i) c > 0, g1(c) ≤ g < g2(c) and
ϕ0

+ < ϕ0 < ϕ− (see Fig.1 (G), (H)), (ii) any c, g < g1(c) and ϕ0
+ < ϕ0 < ϕ− (see Fig.1

(I)), Eq.(1.1) has a periodic wave solution u = ϕ(ξ) corresponding to ϕ0 and its period
is 2T4. On (−T4, T4), ϕ possesses implicit form

∏(
sin−1

√
ϕ−m

α2
4(ϕ− q)

, α2
4, k4

)
= β4(T4 − |ξ|), for |ξ| < T4, (3.19)
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where

k2
4 =

(q − n)(m− ϕ0)
(m− n)(q − ϕ0)

, (3.20)

α2
4 =

m− ϕ0

q − ϕ0
, (3.21)

β4 =

√
(m− n)(ϕ0 − q)
2
√−γ(m− q)

, (3.22)

T4 =
∏(π

2
, α2

4, k4

)
/β4, (3.23)

and
n < q < m < ϕ ≤ ϕ0. (3.24)

Result 5 For any c and g < g2(c), there are two cases as follows:
(i) If ϕ0 = ϕ−, then corresponding to ϕ0 Eq.(1.1) has an explicit periodic wave

solution

u+(ξ) =
ϕ+ + ϕ−

2
+

ϕ− − ϕ+

2
cos

ξ√−γ

=
(γ − 1)c

2γ
+

√
γ2(c2 − 8g) + c2(2γ − 3)

2γ
cos

ξ√−γ
. (3.25)

(ii) If ϕ0 = ϕ+, then corresponding to ϕ0 Eq.(1.1) has an explicit periodic wave
solution

u−(ξ) =
ϕ+ + ϕ−

2
− ϕ− − ϕ+

2
cos

ξ√−γ

=
(γ − 1)c

2γ
−

√
γ2(c2 − 8g) + c2(2γ − 3)

2γ
cos

ξ√−γ
. (3.26)

Corollary 1 If parameter γ < 0, then Eq.(1.1) has two explicit periodic wave
solutions

u1(ξ) =
(γ − 1)c

2γ
+ A cos

ξ√−γ
, (3.27)

and
u2(ξ) =

(γ − 1)c
2γ

+ A sin
ξ√−γ

, (3.28)

where A 6= 0, c 6= 0 are arbitrary constants and ξ = x− ct.

Corollary 2 If parameter γ < 0, then Eq.(1.1) has an explicit complex solution

u(ξ) =
(γ − 1)c

2
+ A eiξ/

√−γ , (3.29)

where A, c are arbitrary constants and ξ = x− ct.
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Remark 1 Results 3, 4 had been obtained by Dai and Huo [8]. When g = g1(c),
Result 5 also had been got by Dai and Huo [8]. In other words, Results 1, 2 are new.
Result 5 and corollaries extend previous results.

We will give proof for Theorem 1 and the corollaries in the next section. Now we take
six sets of data to display the graphs of the implicit functions and the explicit functions
above. These graphs will be compared with the numerical simulations appearing in
Section 5.

Example 1 Taking γ = −2, c = −4, we have q = 2, g1(c) = −14, g2(c) =
−1.5. Letting g = −3, we get ϕ∗− = −5.22063, ϕ+ = −4.73205. Take three numbers
−4.8,−5.2,−5.22062 as the value of ϕ0 respectively. Clearly, c, g and ϕ0 satisfy the
condition (ii) in Result 1, that is, c < 0, g1(c) < g < g2(c) and ϕ∗− < ϕ0 < ϕ+ (see
Fig.1 (C)). Therefore corresponding to ϕ0, Eq.(1.1) possesses periodic wave solution
u = ϕ(ξ) which is of implicit form (3.1). Substituting γ = −2, c = −4, q = 2, g = −3
and ϕ0 = −4.8, −5.2, −5.22062 into (3.1) respectively and using Maple we obtain the
graph of the implicit function u = ϕ(ξ) as Fig.2 (a), (b), (c).

(a) (b) (c)

Fig.2. Graph of implicit function ϕ(ξ) in (3.1) when γ = −2, c = −4, g = −3. (a)
ϕ0 = −4.8, (b) ϕ0 = −5.2, (c) ϕ0 = −5.22062.

Remark 2 From Fig.2 we see that when c < 0, g1(c) < g < g2(c), ϕ0 satisfies
ϕ∗− < ϕ0 < ϕ+ and ϕ0 tends to ϕ∗−, the periodic wave becomes a solitary wave.

Example 2 Take γ = −2, c = 0.2, it follows that q = −0.1, g1(c) = −0.035.
Letting g = −2, we have ϕ+ = −1.84812412, ϕ0

+ = 1.22329, and ϕ− = 2.14812412. Let
ϕ0 equal 1.9 and 2.14812 respectively. Clearly, g and ϕ0 satisfy the condition (ii) in
Result 4, that is, g < g1(c) and ϕ0

+ < ϕ0 < ϕ− (see Fig.1 (I)). Thus corresponding to
ϕ0, Eq.(1.1) possesses periodic wave solution u = ϕ(ξ) which is of implicit form (3.19).
Substituting γ = −2, c = 0.2, q = −0.1, g = −2 and ϕ0 = 1.9, 2.14812, into (3.19)
respectively and using Maple we obtain the graphs of the implicit function u = ϕ(ξ) as
Fig.3 (a), (b).

Meantime, since g = −2 satisfies the condition in Result 5 (namely, g < g2(c)),
Eq.(1.1) has a periodic wave solution of explicit form (3.25). Substituting γ = −2,
ϕ− = 2.14812412, and ϕ+ = −1.84812412 into (3.25) and using Maple we get its graph
as Fig.3 (c).
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(a) (b) (c)

Fig.3. For γ = −2, c = 0.2, g = −2, the graphs of implicit function ϕ(ξ) in (3.19) and
explicit function ϕ(ξ) in (3.25). (a) the graph of ϕ(ξ) in (3.19) when ϕ0 = 1.9, (b) the graph of
ϕ(ξ) in (3.19) when ϕ0 = 2.14812, (c) the graph of ϕ(ξ) in (3.25) when ϕ0 = ϕ− = 2.14812412
and ϕ+ = −1.84812412.

Remark 3 From Fig.2 we see that when g < g1(c), ϕ0 satisfies ϕ0
+ < ϕ0 < ϕ−

and ϕ0 tends to ϕ−, the periodic wave loses the smoothness and becomes a periodic
shock wave. When ϕ0 = ϕ−, the periodic shock wave becomes a smooth periodic wave
suddenly.

4. The Proof of Theorem 1 and Corollary 1, 2

Proof From Lemma 1 it is seen that when ϕ0 satisfies one of the conditions of
Theorem 1, the orbit passing (ϕ0, 0) is a closed orbit. Assume that its parameter
expression is u = ϕ(ξ) and y = y(ξ). From the derivation in Section 2, u = ϕ(ξ) is a
periodic wave solution of Eq.(1.1). Corresponding to those five results of Theorem 1
and Corollary 1, 2, we give the proof as follows respectively.

(1◦) Proof of Result 1 Under one of the two conditions in Result 1, let Γ∗∗ϕ0
denote

the closed orbit passing (ϕ0, 0) (see Fig.4). Thus on ϕ− y plane it has expression

y = ± 1√−γ

√
(m− ϕ)(n− ϕ)(ϕ− ϕ0)

q − ϕ
, for ϕ0 ≤ ϕ ≤ n < m < q. (4.1)

Let its period be 2T1 and ϕ(0) = ϕ0, it follows that ϕ(T1) = ϕ(−T1) = n (see
Fig.4).

Substituting (4.1) into dϕ
dξ = y and integrating it along Γ∗∗ϕ0

, we have

∫ n

ϕ

√
q − s

(m− s)(n− s)(s− ϕ0)
ds =

1√−γ
(T1 − |ξ|), where ϕ0 ≤ ϕ < n < m < q.

(4.2)
Completing the integral in (4.2) and noticing that ϕ(0) = ϕ0, we get Result 1 as

(3.1)-(3.6).
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(a) (b)
Fig.4. The closed orbit Γ∗∗ϕ0

corresponding to ϕ0 in Result 1. (a) c < 0, g2(c) ≤ g < g3(c)
and ϕ∗− < ϕ0 < ϕ0

−, (b) c < 0, g1(c) < g < g2(c) and ϕ∗− < ϕ0 < ϕ+.

(2◦) Proof of Result 2 Under one of the two conditions in Result 2, let Γ00
ϕ0

denote
the closed orbit passing (ϕ0, 0) (see Fig.5). Thus on ϕ− y plane it has expression

(a) (b)
Fig.5. The closed orbit Γ00

ϕ0
corresponding to ϕ0 in Result 2. (a) c > 0, g2(c) ≤ g < g3(c)

and ϕ0
+ < ϕ0 < ϕ∗+, (b) c > 0, g1(c) < g < g2(c) and ϕ− < ϕ0 < ϕ∗+.

y = ± 1√−γ

√
(ϕ0 − ϕ)(ϕ−m)(ϕ− n)

ϕ− q
, for q < n < m ≤ ϕ ≤ ϕ0. (4.3)

Let its period be 2T2 and ϕ(0) = ϕ0, it follows that ϕ(T2) = ϕ(−T2) = m (see
Fig.5).

Substituting (4.1) into dϕ
dξ = y and integrating it along Γ00

ϕ0
, we have

∫ ϕ

m

√
s− q

(ϕ0 − s)(s−m)(s− n)
ds =

1√−γ
(T2 − |ξ|), where q < n < m < ϕ ≤ ϕ0.

(4.4)
Completing the integral in (4.4) and noticing that ϕ(0) = ϕ0, we obtain Result 2

as (3.7)-(3.12).
(3◦) Proof of Result 3 Under one of the two conditions in Result 3, let Γ∗ϕ0

denote the closed orbit passing (ϕ0, 0) (see Fig.6). Thus on ϕ − y plane it possesses
expression

y = ± 1√−γ

√
(m− ϕ)(n− ϕ)(ϕ− ϕ0)

q − ϕ
, for ϕ0 ≤ ϕ ≤ n < q < m. (4.5)

Let its period be 2T3 and ϕ(0) = ϕ0, it follows that ϕ(T3) = ϕ(−T3) = n (see
Fig.6).
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(a) (b) (c)
Fig.6. The closed orbit Γ∗ϕ0

corresponding to ϕ0 in Result 3. (a) c < 0 and g1(c) < g <

g2(c), (b) c < 0 and g = g1(c), (c) for any c, g < g1(c).
Substituting (4.5) into dϕ

dξ = y and integrating it along Γ∗ϕ0
, we have

∫ n

ϕ

√
q − s

(m− s)(n− s)(s− ϕ0)
ds =

1√−γ
(T3 − |ξ|), where ϕ0 ≤ ϕ < n < q < m.

(4.6)
Completing the integral in (4.6) and noticing that ϕ(0) = ϕ0, we get Result 3 as

(3.13)-(3.18).

(4◦) Proof of Result 4 Under one of the two conditions in Result 4, let Γ0
ϕ0

denote the closed orbit passing (ϕ0, 0) (see Fig.7). Thus on ϕ−y plane it has expression

y = ± 1√−γ

√
(ϕ−m)(ϕ0 − ϕ)(ϕ− n)

ϕ− q
, for n < q < m ≤ ϕ ≤ ϕ0. (4.7)

Let 2T4 be its period and ϕ(0) = ϕ0, it follows that ϕ(T4) = ϕ(−T4) = m (see
Fig.7).

Substituting (4.7) into dϕ
dξ = y and integrating it along Γ0

ϕ0
, we have

∫ ϕ

m

√
s− q

(ϕ0 − s)(s−m)(s− n)
ds =

1√−γ
(T4 − |ξ|), where n < q < m < ϕ ≤ ϕ0.

(4.8)
Completing the integral and noticing that ϕ(0) = ϕ0, we obtain Result 4 as (3.19)-

(3.24).
(5◦) Proof of Result 5 Under one of the two conditions in Result 5, let Γ denote

the closed orbit passing (ϕ+, 0) and (ϕ−, 0) (see Fig.6, 7). Thus on ϕ− y plane it has
expression

y = ± 1√−γ

√
(ϕ− ϕ)(ϕ− ϕ+), for ϕ+ ≤ ϕ ≤ ϕ−. (4.9)

Substituting (4.9) into dϕ
dξ = y and integrating it along Γϕ± , we have

∫ ϕ−

ϕ

ds√
(ϕ− − s)(s− ϕ+)

=
|ξ|√−γ

, where ϕ+ ≤ ϕ ≤ ϕ−. (4.10)

or ∫ ϕ

ϕ+

ds√
(ϕ− − s)(s− ϕ+)

=
|ξ|√−γ

, where ϕ+ ≤ ϕ ≤ ϕ−. (4.11)



94 Liu Zhengrong and Zhang Bengong Vol.20

Completing two integrals above we obtain Result 5 as (3.25) and (3.26).

(6◦) Proof of Corollary 1, 2 Note that g is an arbitrary constant and satisfies
g < g2(c). Thus from (3.25) and (3.26) we get u1(ξ) as (3.27). Since u1(π

2 − ξ) is also a
solution of Eq.(1.1), we obtain u2(ξ) as (3.28). From (3.27) and (3.28) we guess that in
(3.29) u(ξ) is a solution of Eq.(1.1). Through test, our guess is right. Hereto we finish
the proof.

(a) (b) (c)
Fig.7. The closed orbit Γ0

ϕ0
corresponding to ϕ0 in Result 4. (a) c > 0 and g1(c) < g <

g2(c), (b) c > 0 and g = g1(c), (c) for any c, g < g1(c).

5. Numerical Simulations and Conclusion

In this section, we give some numerical simulations and a short conclusion. The
numerical simulations will be compared with the graphs drawn as Fig.2, 3.

From the derivation of travelling wave equation and system, one sees that the peri-
odic integral curves of travelling wave equation (2.2) are the planar graphs of periodic
wave solutions of Eq.(1.1). Thus through comparing the graphs of functions given in
Theorem 1 with the simulations of the integral curves, we can test the correctness of the
results in Theorem 1. Now we take six sets of data used in Examples 1, 2 to simulate
the integral curves of Eq.(2.2) by using Maple.

Example 3(Corresponding to Example 1) For those data given in Example 1,
namely γ = −2, c = −4, g = −3, take respectively ϕ(0) = −4.8,−5.2,−5.22062 and
ϕ′(0) = 0 as initial values of Eq.(2.2), the simulations of the integral curves are in Fig.8
(a), (b) and (c).

(a) (b) (c)
Fig.8. The simulations of integral curves of Eq.(2.2) when γ = −2, c = −4, g = −3. (a)

initial values ϕ(0) = −4.8 and ϕ′(0) = 0, (b) initial values ϕ(0) = −5.2 and ϕ′(0) = 0, (c)
initial values ϕ(0) = −5.22062 and ϕ′(0) = 0.



No.1 New expressions of periodic waves and a novel phenomenon in a compressible... 95

Example 4(Corresponding to Example 2) For those data given in Example 2,
that is, γ = −2, c = 0.2, g = −2, take respectively ϕ0 = 1.9, 2.14812, 2.14812412 and
ϕ′(0) = 0 as initial values of Eq.(2.2), the simulations of the integral curves are as Fig.9
(a), (b) and (c).

(a) (b) (c)
Fig.9. The simulations of integral curves of Eq.(2.2) when γ = −2, c = 0.2, g = −2. (a)

initial values ϕ(0) = 1.9 and ϕ′(0) = 0, (b) initial values ϕ(0) = 2.14812 and ϕ′(0) = 0, (c)
initial values ϕ(0) = 2.14812412 and ϕ′(0) = 0.

Comparing the graphs of functions with the simulations of integral curves, one sees
the following two facts: (i) Fig.2 and Fig.8 are identical. (ii) Fig.3 and Fig.9 are the
same. These imply the correctness of our results.

Note that Fig.3(c) and Fig.9(c) correspond to the orbit passing (ϕ+, 0) or (ϕ−, 0)
(see Fig.1 (I)). This implies the orbit Γ (see Fig.1 (I)) can pass through the singular
line ϕ = q. This seems to be a new phenomenon which has not been found in any other
system.

Just as we mentioned in Remark 1. We have obtained four new expressions of
periodic wave solution as (3.1), (3.7), (3.27) and (3.28). Meantime, we have also derived
previous expressions as (3.13) and (3.19) again which have been obtained by Dai and
Huo [8]. Therefore our results have extended the periodic wave solutions of Eq.(1.1).
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