- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
The Cauchy Problem of the Hartree Equation
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-21-22,
author = {Changxing Miao, Guixiang Xu and Lifeng Zhao},
title = {The Cauchy Problem of the Hartree Equation},
journal = {Journal of Partial Differential Equations},
year = {2008},
volume = {21},
number = {1},
pages = {22--44},
abstract = { In this paper, we systematically study the wellposedness, illposedness of the Hartree equation, and obtain the sharp local wellposedness, the global existence in H^s, s ≥ 1 and the small scattering result in H^s for 2 < γ < n and s ≥ \frac{γ}{2}-1. In addition, we study the nonexistence of nontrivial asymptotically free solutions of the Hartree equation.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5267.html}
}
TY - JOUR
T1 - The Cauchy Problem of the Hartree Equation
AU - Changxing Miao, Guixiang Xu & Lifeng Zhao
JO - Journal of Partial Differential Equations
VL - 1
SP - 22
EP - 44
PY - 2008
DA - 2008/02
SN - 21
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5267.html
KW - Hartree equation
KW - well-posedness
KW - illposedness
KW - Galilean invariance
KW - dispersion analysis
KW - scattering
KW - asymptotically free solutions
AB - In this paper, we systematically study the wellposedness, illposedness of the Hartree equation, and obtain the sharp local wellposedness, the global existence in H^s, s ≥ 1 and the small scattering result in H^s for 2 < γ < n and s ≥ \frac{γ}{2}-1. In addition, we study the nonexistence of nontrivial asymptotically free solutions of the Hartree equation.
Changxing Miao, Guixiang Xu and Lifeng Zhao. (2008). The Cauchy Problem of the Hartree Equation.
Journal of Partial Differential Equations. 21 (1).
22-44.
doi:
Copy to clipboard