- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
A New Proof of Subcritical Trudinger-Moser Inequalities on the Whole Euclidean Space
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-26-300,
author = {Yang , Yunyan and Zhu , Xiaobao},
title = {A New Proof of Subcritical Trudinger-Moser Inequalities on the Whole Euclidean Space},
journal = {Journal of Partial Differential Equations},
year = {2013},
volume = {26},
number = {4},
pages = {300--304},
abstract = {
In this note, we give a new proof of subcritical Trudinger-Moser inequality on $R^n$. All the existing proofs on this inequality are based on the rearrangement argument with respect to functions in the Sobolev space $W^{1,n}(R^n)$. Our method avoids this technique and thus can be used in the Riemannian manifold case and in the entire Heisenberg group.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v26.n4.2}, url = {http://global-sci.org/intro/article_detail/jpde/5166.html} }
TY - JOUR
T1 - A New Proof of Subcritical Trudinger-Moser Inequalities on the Whole Euclidean Space
AU - Yang , Yunyan
AU - Zhu , Xiaobao
JO - Journal of Partial Differential Equations
VL - 4
SP - 300
EP - 304
PY - 2013
DA - 2013/12
SN - 26
DO - http://doi.org/10.4208/jpde.v26.n4.2
UR - https://global-sci.org/intro/article_detail/jpde/5166.html
KW - Trudinger-Moser inequality
KW - Adams inequality
AB -
In this note, we give a new proof of subcritical Trudinger-Moser inequality on $R^n$. All the existing proofs on this inequality are based on the rearrangement argument with respect to functions in the Sobolev space $W^{1,n}(R^n)$. Our method avoids this technique and thus can be used in the Riemannian manifold case and in the entire Heisenberg group.
Yang , Yunyan and Zhu , Xiaobao. (2013). A New Proof of Subcritical Trudinger-Moser Inequalities on the Whole Euclidean Space.
Journal of Partial Differential Equations. 26 (4).
300-304.
doi:10.4208/jpde.v26.n4.2
Copy to clipboard