- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Supercritical Elliptic Equation in Hyperbolic Space
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-28-120,
author = {He , Haiyang},
title = {Supercritical Elliptic Equation in Hyperbolic Space},
journal = {Journal of Partial Differential Equations},
year = {2015},
volume = {28},
number = {2},
pages = {120--127},
abstract = { In this paper, we study the following semi-linear elliptic equation $$-Δ_H^nu=|u|^{p-2}u,\qquad\qquad (0.1)$$ in the whole Hyperbolic space $\mathbb{H}^n$,where n ≥ 3, p › 2n/(n-2). We obtain some regularity results for the radial singular solutions of problem (0.1). We show that the singular solution $u^∗$ with $lim_{t → 0}(sinht)^{\frac{2}{p-2}}⋅u(t)=±(\frac{2}{p-2}(n-2-\frac{2}{p-2})^{\frac{1}{p-2}}$ belongs to the closure (in the natural topology given by $H¹_{loc}(\mathbb{H}^N)∩L^p_{loc}(H^N))$ of the set of smooth classical solutions to the Eq. (0.1). In contrast, we also prove that any oscillating radial solutions of (0.1) on $\mathbb{H}^N$\{0} fails to be in the space $H¹_{loc}(\mathbb{H}^N)∩L^p_{loc}(H^N)$.},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v28.n2.2},
url = {http://global-sci.org/intro/article_detail/jpde/5105.html}
}
TY - JOUR
T1 - Supercritical Elliptic Equation in Hyperbolic Space
AU - He , Haiyang
JO - Journal of Partial Differential Equations
VL - 2
SP - 120
EP - 127
PY - 2015
DA - 2015/06
SN - 28
DO - http://doi.org/10.4208/jpde.v28.n2.2
UR - https://global-sci.org/intro/article_detail/jpde/5105.html
KW - Supercritical
KW - singularity
KW - hyperbolic space
AB - In this paper, we study the following semi-linear elliptic equation $$-Δ_H^nu=|u|^{p-2}u,\qquad\qquad (0.1)$$ in the whole Hyperbolic space $\mathbb{H}^n$,where n ≥ 3, p › 2n/(n-2). We obtain some regularity results for the radial singular solutions of problem (0.1). We show that the singular solution $u^∗$ with $lim_{t → 0}(sinht)^{\frac{2}{p-2}}⋅u(t)=±(\frac{2}{p-2}(n-2-\frac{2}{p-2})^{\frac{1}{p-2}}$ belongs to the closure (in the natural topology given by $H¹_{loc}(\mathbb{H}^N)∩L^p_{loc}(H^N))$ of the set of smooth classical solutions to the Eq. (0.1). In contrast, we also prove that any oscillating radial solutions of (0.1) on $\mathbb{H}^N$\{0} fails to be in the space $H¹_{loc}(\mathbb{H}^N)∩L^p_{loc}(H^N)$.
He , Haiyang. (2015). Supercritical Elliptic Equation in Hyperbolic Space.
Journal of Partial Differential Equations. 28 (2).
120-127.
doi:10.4208/jpde.v28.n2.2
Copy to clipboard