- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Classification of Solutions to a Critically Nonlinear System of Elliptic Equations on Euclidean Half-Space
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-28-74,
author = {Gluck , Mathew R. and Zhang , Lei},
title = {Classification of Solutions to a Critically Nonlinear System of Elliptic Equations on Euclidean Half-Space},
journal = {Journal of Partial Differential Equations},
year = {2015},
volume = {28},
number = {1},
pages = {74--94},
abstract = {For $N\geq 3$ and non-negative real numbers $a_{ij}$ and $b_{ij}$ ($i,j= 1, \cdots, m$), the semi-linear elliptic system\begin{equation*}
\begin{cases}\Delta u_i+\prod\limits_{j=1}^m u_j^{a_{ij}}=0,\text{in}\mathbb{R}_+^N,\\
\dfrac{\partial u_i}{\partial y_N}=c_i\prod\limits_{j=1}^m u_j^{b_{ij}},\text{on} \partial\mathbb{R}_+^N,\end{cases}\qquad
i=1,\cdots,m,\end{equation*}
%
is considered, where $\mathbb{R}_+^N$ is the upper half of $N$-dimensional Euclidean space. Under suitable assumptions on the exponents $a_{ij}$ and $b_{ij}$, a classification theorem for the positive $C^2(\mathbb{R}_+^N)\cap C^1(\overline{R_+^N})$-solutions of this system is proven.
},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v28.n1.7},
url = {http://global-sci.org/intro/article_detail/jpde/5103.html}
}
TY - JOUR
T1 - Classification of Solutions to a Critically Nonlinear System of Elliptic Equations on Euclidean Half-Space
AU - Gluck , Mathew R.
AU - Zhang , Lei
JO - Journal of Partial Differential Equations
VL - 1
SP - 74
EP - 94
PY - 2015
DA - 2015/03
SN - 28
DO - http://doi.org/10.4208/jpde.v28.n1.7
UR - https://global-sci.org/intro/article_detail/jpde/5103.html
KW - Nonlinear elliptic systems
AB - For $N\geq 3$ and non-negative real numbers $a_{ij}$ and $b_{ij}$ ($i,j= 1, \cdots, m$), the semi-linear elliptic system\begin{equation*}
\begin{cases}\Delta u_i+\prod\limits_{j=1}^m u_j^{a_{ij}}=0,\text{in}\mathbb{R}_+^N,\\
\dfrac{\partial u_i}{\partial y_N}=c_i\prod\limits_{j=1}^m u_j^{b_{ij}},\text{on} \partial\mathbb{R}_+^N,\end{cases}\qquad
i=1,\cdots,m,\end{equation*}
%
is considered, where $\mathbb{R}_+^N$ is the upper half of $N$-dimensional Euclidean space. Under suitable assumptions on the exponents $a_{ij}$ and $b_{ij}$, a classification theorem for the positive $C^2(\mathbb{R}_+^N)\cap C^1(\overline{R_+^N})$-solutions of this system is proven.
Mathew R. Gluck & Lei Zhang. (2019). Classification of Solutions to a Critically Nonlinear System of Elliptic Equations on Euclidean Half-Space.
Journal of Partial Differential Equations. 28 (1).
74-94.
doi:10.4208/jpde.v28.n1.7
Copy to clipboard