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Abstract. For N≥3 and non-negative real numbers aij and bij (i, j=1,··· ,m), the semi-
linear elliptic system
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aij

j =0, in RN
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∂ui
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= ci

m

∏
j=1

u
bij

j , on ∂RN
+ ,

i=1,··· ,m,

is considered, where RN
+ is the upper half of N-dimensional Euclidean space. Under

suitable assumptions on the exponents aij and bij, a classification theorem for the pos-

itive C2(RN
+)∩C1(RN

+)-solutions of this system is proven.
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1 Introduction

Let N≥3 be a positive integer and let RN
+={(y1,··· ,yN)∈RN : yN >0} denote the upper

half of N-dimensional Euclidean space. Fix a positive integer m and set J={1,··· ,m}. Let

A=[aij] be an m×m matrix with nonnegative entries. We are concerned with the classical

solutions of the semi-linear elliptic system

∆ui+
m

∏
j=1

u
aij

j =0, in Ω⊂R
N for all i∈ J. (1.1)

∗Corresponding author. Email addresses: mathew.gluck@uah.edu (M. Gluck), leizhang@ufl.edu (L. Zhang)

http://www.global-sci.org/jpde/ 74



Classification of Solutions to a Critically Nonlinear System 75

This system and its variants have been studied extensively in numerous contexts. For

example, (1.1) arises as the system of equations for a steady-state solution to the corre-

sponding parabolic reaction-diffusion system. In particular, when m=2 the system










∂u1

∂t
=∆u1+ua11

1 ua12
2 , for y∈Ω, t>0,

∂u2

∂t
=∆u2+ua21

1 ua22
2 , for y∈Ω, t>0,

(1.2)

has received much attention. For example, when a11 = a22 =0, (1.2) gives a simple model

for heat propagation in a two-component combustible mixture [1]. Variants of (1.2) have

also been used to model the diffusing densities of two biological species when each specie

finds its subsidence from the activity of the other specie [2]. It is well-known that a

thorough understanding of (1.1) is highly beneficial to obtaining an understanding of

(1.2). For example, under appropriate assumptions on A, in [3] and [4] Mitidieri proved

nonexistence results for (1.1) when Ω = RN and m = 2. These results were refined by

Zheng in [5] and then used to derive blow-up (in time) estimates for solutions of (1.2)

that satisfy suitable initial and boundary conditions. For more results concerning these

parabolic systems and their variants the reader is referred to [6, 7] and the references

therein.

An interesting case of (1.1) arises when A satisfies


















aij ≥0, for all (i, j)∈ J× J,

A is irreducible ,
m

∑
j=1

aij =
N+2
N−2 , for all i∈ J.

(1.3)

Recall that an m×m-matrix A is called irreducible if there is no partition J = I1∪ I2 such

that aij =0 for all i∈ I1, and j∈ I2. When m=1 equations (1.1) reduce to

∆u+Ku(N+2)/(N−2)=0, (1.4)

with K = 1. Eq. (1.4) has been studied extensively as it arises in relation to the famous

Yamabe problem. The Yamabe problem asks whether it is always possible to confor-

mally deform the metric g of a given smooth compact Riemannian manifold to a metric

ĝ = u4/(N−2)g whose scalar curvature is constant. Through the works of Trudinger [8],

Aubin [9] and Schoen [10], the Yamabe problem was proven affirmative. See [11] and the

references therein for results regarding the Yamabe problem. For A satisfying (1.3) and

Ω=RN, the classical solutions of (1.1) were classified by Chipot, Shafrir and Wolansky

in [12] (see also [13]). Their result is the following.

Theorem 1.1 (Chipot, Shafrir and Wolansky [12]). Suppose A satisfies (1.3). If u1,··· ,um are

positive C2(RN)-solutions of (1.1) with Ω=RN then

ui(y)=
βi

(

σ2+|y−y0|2
)(N−2)/2

, for all i∈ J, (1.5)
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for some y0∈RN and some positive constants σ2 and β1,··· ,βm satisfying

logβi =
m

∑
j=1

aij logβ j−log
(

σ2N(N−2)
)

, for all i∈ J. (1.6)

This theorem is the system-generalization of the classification of entire solutions to (1.4)

given in [14].

Many interesting questions involving variants of (1.4) have been considered. For ex-

ample, for real numbers K and c the equations






∆u+Ku(N+2)/(N−2)=0, in RN
+ ,

∂u

∂yN
= cuN/(N−2), on ∂RN

+ ,
(1.7)

arise in relation to the boundary-Yamabe problem which seeks to determine whether the
metric g of smooth compact Riemannian manifold M with boundary can be conformally

deformed into a metric ĝ such that both the scalar curvature and the boundary mean

curvature of ĝ are constant. The boundary-Yamabe problem is still open. For a detailed

discussion on the boundary-Yamabe problem, the reader is referred to Escobar [15, 16],

Han-Li [17, 18], Marques [19] and the references therein. The solutions of equations (1.7)

were classified separately by Li and Zhu in [20] and Chipot, Shafrir and Fila in [21]. Later

in [22], the solutions of (1.7) with more general nonlinearities were classified. The result

is as follows

Theorem 1.2 (Li-Zhu [20], Chipot-Shafrir-Fila [21] and Li-Zhang [22]). If u is a non-negative

C2(RN
+)∩C1(RN

+)-solution of (1.7) with K= N(N−2), then either u≡ 0 or there exists σ> 0

and (y0
1,··· ,y0

N−1)∈∂RN
+ such that

u(y)=

(

σ

σ2+|y−y0|2

)(N−2)/2

, for all y∈R
N
+ ,

where y0=(y0
1,··· ,y0

N−1,y0
N) and y0

N =σc/(N−2).

In this paper, an analogue of Theorem 1.2 is proven for the generalization of (1.7) to a

system of equations. To generalize the boundary nonlinearity in (1.7) let c1,··· ,cm be real

numbers and let B=[bij] be an m×m matrix satisfying


















bij ≥0, for all (i, j)∈ J× J,
m

∑
j=1

bij=
N

N−2 , for all i∈ J,

bij =
N

N−2 δij, for all i∈ J such that ci≥0,

(1.8)

and consider the system


























∆ui+
m

∏
j=1

u
aij

j =0, in RN
+,

∂ui

∂yN
= ci

m

∏
j=1

u
bij

j , on ∂RN
+ ,

ui>0, on RN
+ ,

for all i∈ J. (1.9)
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Our main theorem is as follows.

Theorem 1.3. Suppose A satisfies (1.3) and B satisfies (1.8). If (u1,··· ,um) is a C2(RN
+)∩

C1(RN
+)-solution of (1.9) then there exist positive constants σ,β1,··· ,βm satisfying (1.6) and

(y0
1,··· ,y0

N−1)∈∂RN
+ such that ui is given by (1.5) with y0=(y0

1,··· ,y0
N−1,y0

N), where

y0
N =σ2Nci

m

∏
j=1

β
bij−aij

j , for all i∈ J. (1.10)

In particular, σ2Nci ∏
m
j=1 β

bij−aij

j is independent of i.

Remark 1.1. The third item of (1.8) says that if i∈ J is an index for which ci ≥0, then the

boundary equation for ui is

∂ui

∂yN
= ciu

N/(N−2)
i , on ∂R

N
+ .

This assumption is made for convenience as it makes some of the proofs simpler. See, for

example the proof of Claim 3.2.

The proof of Theorem 1.3 is via the method of moving spheres and is inspired by

the proofs of Theorems 1.2 and 1.1 given in [22] and [12] respectively. The organization

of this paper is as follows. In Section 2 we show that the moving sphere process can

start. In Section 3 we obtain a symmetry relation between ui and its “critical” Kelvin

transformations. In Section 4 we first use a calculus lemma to deduce the form of the

restriction of ui to ∂RN
+ . Next we transform the problem defined on RN

+ to a new problem

defined on a ball. After determining that the solutions of the transformed problem must

be radial, a system of ODE is obtained and the solution to this system is determined. The

conclusion of Theorem 1.3 will follow after returning to the original problem.

Throughout, C will be used to denote a positive constant depending only on N. The

value of C may change from line to line. The Euclidean ball of radius r and center x will

be denoted Br(x). When x=0 the notation Br will be used.

2 The moving sphere process can start

Let u1,··· ,um be as in the hypotheses of Theorem 1.3. As the proof of Theorem 1.3 is via

the method of moving spheres, we wish to consider the following ∂RN
+×(0,∞)-indexed

family of Kelvin inversions of ui. For x∈∂RN
+ and λ>0 let

Σx,λ=R
N
+\Bλ(x)

and define

ui,x,λ(y)=

(

λ

|y−x|

)N−2

ui

(

x+
λ2(y−x)

|y−x|2

)

, for y∈RN
+ \{x} and i∈ J.
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By using (1.3), (1.8) and (1.9) and computing directly, one may verify that u1,x,λ,··· ,um,x,λ

satisfy


























∆ui,x,λ+
m

∏
j=1

u
aij

j,x,λ=0, in RN
+ ,

∂ui,x,λ

∂yN
= ci

m

∏
j=1

u
bij

j,x,λ, on ∂RN
+\{x},

ui,x,λ>0, in RN
+\{x},

for all i∈ J. (2.1)

Since we want to compare ui to ui,x,λ, we define the differences

wi,x,λ(y)=ui(y)−ui,x,λ(y), for y∈RN
+ \{x} and i∈ J.

Using (1.9) and (2.1) one can verify that wi,x,λ satisfies















−∆wi,x,λ=
m

∏
j=1

u
aij

j −
m

∏
j=1

u
aij

j,x,λ, in Σx,λ,

∂wi,x,λ

∂yN
= ci

(

m

∏
j=1

u
bij

j −
m

∏
j=1

u
bij

j,x,λ

)

, on ∂Σx,λ∩∂RN
+ ,

for all i∈ J. (2.2)

Moreover,

wi,x,λ=0, on ∂Σx,λ∩∂Bλ(x), for all i∈ J. (2.3)

As the proofs of many of the propositions given will be similar for x=0 and for general

x∈∂RN
+ , when considering x=0 we will use the following simplified notation

Σ0,λ=Σλ, ui,0,λ=ui,λ and wi,0,λ=wi,λ. (2.4)

Proposition 2.1. For each x∈∂RN
+ , there exists λ0(x)>0 such that for all λ∈ (0,λ0(x)),

wi,x,λ≥0, Σx,λ for all i∈ J.

According to Proposition 2.1, for x∈∂RN
+ , we may define

λ(x)=sup{λ>0 : wi,x,µ ≥0 in Σx,µ for all µ∈ (0,λ) and all i∈ J}.

For convenience, the proof of Proposition 2.1 will only be given for x=0 and the notation

in (2.4) will be used. The proof for general x∈ ∂RN
+ is similar to the proof for x= 0. We

begin by establishing three lemmas.

Lemma 2.1. There exists r0 >0 such that for all i∈ J and all λ∈ (0,r0),

wi,λ(y)>0, for all y∈B+
r0
\Bλ.
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Proof. For (r,θ) ∈ [0,∞)×S
N−1
+ and i ∈ J set gi(r,θ) = r(N−2)/2ui(r,θ), where S

N−1
+ is the

closed, (N−1)-dimensional upper half sphere. Set

r0=min

{

1,
N−2

4

(

min
j∈J

min
B+

1

uj

)

(

max
j∈J

∥

∥Duj

∥

∥

C0(B+
1 )

)−1
}

.

For all 0< r≤ r0 and for all i∈ J, we have

∂gi

∂r
(r,θ)≥ r(N−4)/2

(

N−2

2
min

B+
1

ui−r‖Dui‖C0(B+
1 )

)

>0.

In particular, if 0<λ≤ r0 then with θ=y/|y|,

wi,λ(y)= |y|(2−N)/2

(

gi(|y|,θ)−gi

(

λ2

|y|
,θ

))

>0, for all y∈B+
r0
\Bλ and all i∈ J.

Lemma 2.2. If i is an index for which ci <0, then liminf|y|→∞ |y|N−2ui(y)>0.

Proof. If ci ≥0 for all i∈ J, there is nothing to prove. Otherwise, fix R>0 and fix i∈ J for

which ci < 0. By (2.1) the hypotheses of Lemma 5.1 are satisfied by ui,R. Therefore, for

each z∈B+
R \{0}

(

R

|z|

)N−2

ui

(

R2z

|z|2

)

=ui,R(z)≥ min
∂BR∩RN

+

ui,R = min
∂BR∩RN

+

ui.

Now, if y ∈ RN
+\BR, set z = R2y/|y|2. Then z ∈ B+

R \{0}, y = R2z/|z|2, and the above

inequalities give

ui(y)≥

(

min
∂BR∩RN

+

ui

)

RN−2 |y|2−N .

Lemma 2.2 follows immediately.

Lemma 2.3. If i is an index for which ci ≥0, then liminf|y|→∞ |y|N−2ui(y)>0.

Proof. If ci < 0 for all i∈ J there is nothing to prove. Otherwise, fix an index i for which

ci ≥0 and let

Oi ={y∈R
N
+ : ui(y)< |y|2−N}.

Clearly, to prove Lemma 2.3 it suffices to show liminf|y|→∞ ;y∈Oi
|y|N−2ui(y)>0. For y∈Oi

we have ui(y)
N/(N−2)≤|y|−2ui(y), so ui satisfies







−∆ui >0, in Oi,
∂ui

∂yN
−C1 |y|

−2ui <0, on ∂RN
+∩Oi,
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for some constant C1=C1(maxj

∣

∣cj

∣

∣)>0. For A≫1 fixed and to be determined, define

ξ(y)= |y−AeN |
2−N+|y|1−N , for |y|≥2A. (2.5)

By direct computation, one may verify that ξ satisfies



















∆ξ>0, in RN
+\B2A,

|y|−2ξ(y)≤C |y|−N , in RN
+\B2A,

∂ξ

∂yN
(y)=A(N−2)|y−AeN |

−N , on ∂RN
+\B2A,

(2.6)

where C depends only on N. Therefore, we may choose A= A(N,maxj

∣

∣cj

∣

∣) sufficiently

large so that
(

∂

∂yN
−C1 |y|

−2

)

ξ(y)>0, on ∂R
N
+\B2A.

Fixing such an A and choosing ǫ > 0 small enough to achieve ui(y)> ǫξ(y) on (∂B2A∩

RN
+)∪(∂Oi∩RN

+), we obtain



















−∆(ui−ǫξ)>0, in Oi\B2A,
(

∂

∂yN
−C1 |y|

−2

)

(ui−ǫξ)<0, on (∂RN
+∩O i)\B2A,

(ui−ǫξ)(y)≥0, on (∂B2A∩RN
+)∪[(∂Oi∩RN

+)\B2A].

(2.7)

Moreover, liminf|y|→∞(ui−ǫξ)≥0, so if ui−ǫξ is negative at some point of O i\B2A, then

ui−ǫξ must achieve a negative minimum at some point ỹ∈O i\B2A. By the maximum

principle, we may assume ỹ∈∂(Oi\B2A). The third item of (2.7) imposes ỹ∈(∂RN
+∩Oi)\

B2A. On the other hand, (ui−ǫξ)(ỹ)<0 and ∂
∂yN

(ui−ǫξ)(ỹ)≥0, so the second item of (2.7)

is violated. We conclude that ui−ǫξ≥0 in Oi\B2A. Consequently,

liminf
|y|→∞ ;y∈Oi

|y|N−2ui(y)≥ǫliminf
|y|→∞

|y|N−2ξ(y)>0.

Lemma 2.3 is established.

Proof of Proposition 2.1. Let r0 be as in Lemma 2.1. By Lemmas 2.2 and 2.3 we may first

choose c0∈ (0,1] such that

ui(y)≥ c0 |y|
2−N , for all y∈RN

+ \Br0 , and all i∈ J,

and then choose λ0∈ (0,r0) such that

λN−2
0

(

max
j

max
B+

r0

uj

)

≤ c0.
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For such λ0, if 0<λ≤λ0 then

ui,λ(y)≤λN−2
0

(

max
j

max
B+

r0

uj

)

|y|2−N≤c0 |y|
2−N≤ui(y), for all y∈RN

+\Br0 and all i∈ J.

Combining this with Lemma 2.1 establishes Proposition 2.1.

3 A symmetry relation for u1,··· ,um

In this section we prove the following proposition.

Proposition 3.1. For each x∈∂RN
+ , λ(x)<∞ and

wi,x,λ(x)(y)≡0, for all y∈RN
+ \{x}and all i∈ J.

For convenience Proposition 3.1 will be proven for x=0 only. Proposition 3.1 will be

established with the aid of some lemmas.

Lemma 3.1. Let A be a matrix satisfying (1.3) and let x0 ∈ ∂RN
+ . For λ ∈ (0,λ(x0)], if there

exists i0∈ J for which wi0,x0,λ≡0 in Σx0,λ, then

wi,x0,λ≡0, in RN
+\{x0} for all i∈ J. (3.1)

Proof. Clearly, it suffices to show that the equality in (3.1) holds for all y∈Σx0 ,λ. The proof

is given for x0=0 only. The proof for general x0∈∂RN
+ is similar. Fix 0<λ≤λ. According

to (2.2), the interior equation for wi,λ may be written

−∆wi,λ=
m

∑
j=1

φij(u
aij

j −u
aij

j,λ), in Σλ for all i∈ J, (3.2)

where

φij=

(

j−1

∏
k=1

uaik

k,λ

)(

m

∏
ℓ=j+1

uaiℓ

ℓ

)

>0.

Here the notational conventions ∏
0
k=1uaik

k,λ=1 and ∏
m
ℓ=m+1uaiℓ

ℓ
=1 are used. Let i0 be as in

the hypotheses of the lemma and consider fixed but arbitrary j0∈ J. By irreducibility of A
and non negativity of the entries of A, there exists k≤m−1 and a sequence i0,i1,··· ,ik= j0
of distinct elements of J such that

aiα iα+1
>0, for all α∈{0,1,··· ,k−1}.

Since wi0,λ≡0 and by Eq. (3.2) with i= i0 we have

0=
m

∑
j=1

φi0 j

(

u
ai0 j

j −u
ai0 j

j,λ

)

, in Σλ.
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By positivity of φij and since ai0 i1 >0 this equation ensures that wi1,λ ≡0 in Σλ. Similarly,

using ai1 i2 > 0 and Eq. (3.2) with i = i1 we deduce that wi2,λ ≡ 0 in Σλ. Repeating this

argument a total of k times shows that wiα,λ ≡0 in Σλ for all α∈{1,2,··· ,k}. In particular,

wj0,λ≡0 in Σλ.

Lemma 3.2. If x0∈∂RN
+ with λ(x0)<∞, then wi,x0,λ(x0)

≡0 in RN
+\{x0} for all i∈ J.

Proof. For simplicity, we assume x0=0. By Lemma 3.1, it suffices to show that there exists

i∈ J such that wi,λ≡0 in RN
+\{0}. In fact, we only need to show this equality holds in Σλ

for some i∈ J. For the sake of obtaining a contradiction, suppose that for all i∈ J, there is

some point of Σλ at which wi,λ is positive. By the maximum principle we have

wi,λ(y)>0, for all y∈Σλ and all i∈ J. (3.3)

Moreover,

wi,λ(y)>0, for all y∈∂Σλ\∂Bλ and all i∈ J. (3.4)

Indeed, if ỹ∈∂Σλ\∂Bλ and i0∈ J are such that with wi0,λ(ỹ)=0, then apply Hopf’s Lemma

to wi0,λ on any ball B⊂Σλ such that ∂B∩∂Σλ ={ỹ} to deduce

∂wi0,λ

∂yN
(ỹ)>0. (3.5)

On the other hand, if ci0 <0 then

∂wi0,λ

∂yN
(ỹ)= ci0

(

m

∏
j=1

uj(ỹ)
bi0 j−

m

∏
j=1

uj,λ(ỹ)
bi0 j

)

≤0.

If ci0 ≥0, then
∂wi0,λ

∂yN
(ỹ)= ci0

(

ui0(ỹ)
N/(N−2)−ui0,λ(ỹ)

N/(N−2)
)

=0.

In either case, (3.5) is violated, so (3.4) holds.

Now, for y∈∂Bλ∩∂Σλ, let ν=ν(y) denote the unit outer normal vector to Bλ (pointing

into Σλ).

Claim 3.2. There exists ǫ>0 such that

∂wi,λ

∂ν
(y)≥ǫ, for all y∈∂Σλ∩∂Bλ and all i∈ J.

Proof of Claim 3.2. In view of (3.3) and (2.3), a routine application of Hopf’s Lemma yields

the positivity of ∂wi,λ/∂ν(y) for all y∈∂Σλ\∂RN
+ and all i∈ J. Since ∂Σλ∩∂Bλ is compact,

Claim 3.2 will be established once we show

∂wi,λ

∂ν
(y)>0, for all y∈∂Bλ∩∂R

N
+ and all i∈ J. (3.6)
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To show this, define

Ω={y∈Σλ :dist(y,∂Bλ∩∂R
N
+)<

λ

2
}

and

φ(y)=δeαyN (|y|2−λ
2
),

where δ> 0 (small) and α> 0 (large) are positive constants which are to be determined.

Elementary computations yield






























∆φ>0, in Σλ,

φ≡0, on ∂Bλ,
∂φ

∂yN
=αφ, on ∂RN

+ ,

∂φ

∂ν
=2δλeαyN , on ∂Bλ.

(3.7)

Moreover, if i is an index for which ci <0, then by using each of the second item of (2.2),

(3.4) and the third item of (3.7) one may verify that for any choice of α>0

∂

∂yN
(wi,λ−φ)≤−αφ≤

α

2
(wi,λ−φ), on ∂Ω∩∂R

N
+ . (3.8)

If i is an index for which ci≥0, then by Mean-Value Theorem, there is ψi(y)∈[ui,λ(y),ui(y)]
such that

∂

∂yN
(wi,λ−φ)=ci

(

u
N/(N−2)
i −u

N/(N−2)

i,λ

)

−αφ

=
N

N−2
ciψ

2/(N−2)
i wi,λ−αφ

≤
N

N−2

(

max
j

∣

∣cj

∣

∣

)(

max
j

max
Ω

uj

)2/(N−2)

wi,λ−αφ.

Therefore, by choosing α=α(N,maxj

∣

∣cj

∣

∣,maxjmaxΩ uj) sufficiently large, we obtain

∂

∂yN
(wi,λ−φ)≤

α

2
(wi,λ−φ), on ∂Ω∩∂R

N
+ . (3.9)

Combining (3.8) and (3.9) we see that there is a constant C1>0 for which

∂

∂yN
(wi,λ−φ)≤C1(wi,λ−φ), on ∂Ω∩∂R

N
+ for all i∈ J. (3.10)

Fix any such C1. After choosing δ sufficiently small wi,λ−φ is seen to satisfy











−∆(wi,λ−φ)>0, in Ω,

wi,λ−φ≡0, on ∂Ω∩∂Bλ,

wi,λ−φ>0, on ∂Ω\∂Σλ,

for all i∈ J. (3.11)
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By the maximum principle, if there exists i0∈ J such that wi0,λ−φ is negative at some point

of Ω then wi0,λ−φ achieves a negative minimum value over Ω at some point ỹ∈ ∂Ω. By

the second and third items of (3.11), we may assume ỹ∈∂RN
+∩{y : λ< |y|≤3λ/2}. Since

ỹ is a minimizer of wi0,λ−φ and by (3.10), we have

0≤
∂

∂yN
(wi0,λ−φ)(ỹ)≤C1(wi0,λ−φ)(ỹ)<0,

a contradiction. We conclude that wi,λ ≥ φ in Ω for all i ∈ J. In particular,
∂wi,λ

∂ν ≥ ∂φ
∂ν on

∂Bλ∩∂RN
+ for all i ∈ J. Combining this with the last item of (3.7), we obtain inequality

(3.6). Claim 3.2 follows.

In view of Claim 3.2 and the continuity of λ 7→wi,λ, we may choose R0> λ̄ such that

∂wi,λ

∂r
(y)≥

ǫ

2
, for all y∈B+

R0
\Bλ, all λ∈ [λ,R0] and all i∈ J.

Therefore,

wi,λ(y)>0, in B+
R0
\Bλ for all λ∈ [λ̄,R0] and all i∈ J. (3.12)

Claim 3.3. If i is an index for which ci <0, then liminf|y|→∞ |y|N−2wi,λ(y)>0.

Proof of Claim 3.3. If ci ≥ 0 for all i ∈ J, there is nothing to prove. Otherwise, let i be an

index for which ci<0 and define

hi(y)=

(

min
∂BR0

∩RN
+

wi,λ

)

RN−2
0 |y|2−N , for |y|≥R0.

By performing elementary computations using (3.3), (3.4) and the negativity of ci, one

may verify that wi,λ−hi satisfies























−∆(wi,λ−hi)≥0, in RN
+\BR0

,

wi,λ−hi ≥0, on ∂BR0
∩RN

+ ,

∂(wi,λ−hi)

∂yN
= ci

(

m

∏
j=1

u
aij

j −
m

∏
j=1

u
aij

j,λ

)

<0, on ∂RN
+\BR0

.

(3.13)

Moreover, using (3.3) once again we have

liminf
|y|→∞

(wi,λ−hi)(y)≥0. (3.14)

Consequently, if wi,λ−hi is negative at some point of RN
+\BR0

, then wi,λ−hi attains a

negative minimum value over RN
+\BR0

at some point ỹ ∈ RN
+\BR0

. By the maximum
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principle, we may assume ỹ ∈ ∂(RN
+\BR0

). By the second item of (3.13) we must have

ỹ ∈ ∂RN
+\BR0

. On the other hand, since ỹ minimizes wi,λ−hi and by the third item of

(3.13) we have

0≤
∂

∂yN
(wi,λ−hi)(ỹ)<0,

a contradiction. We conclude that wi,λ≥hi in RN
+\BR0

. Claim 3.3 follows immediately.

Claim 3.4. If i is an index for which ci≥0, then liminf|y|→∞ |y|N−2wi,λ(y)>0.

Proof of Claim 3.4. The proof is similar to the proof of Lemma 2.3. Suppose i is an index

for which ci≥0 and set

Oi ={y∈Σλ : wi,λ(y)<ui,λ(y)}.

To prove Claim 3.4, it suffices to show that

liminf
|y|→∞;y∈Oi

|y|N−2wi,λ(y)>0.

We have

ui(y)≤2λ
N−2



max
j

max
B+

λ

uj



|y|2−N , for all y∈Oi. (3.15)

According to the Mean-Value Theorem, there is ψi(y) ∈ [ui,λ(y),ui(y)] such that for all

y∈∂Σλ∩∂RN
+ ,

ui(y)
N/(N−2)−ui,λ(y)

N/(N−2)=
N

N−2
ψi(y)

2/(N−2)wi,λ(y)≤
N

N−2
ui(y)

2/(N−2)wi,λ(y).

Therefore, using the boundary equation for wi,λ in (2.2) corresponding to ci≥0 and using

inequality (3.15), there is a constant C1=C1(N,λ,maxj

∣

∣cj

∣

∣,maxj max
B
+
λ

uj)>0 such that

(

∂

∂yN
−C1 |y|

−2

)

wi,λ≤0, for all y∈O i∩∂R
N
+ .

For A≫1 large and to be determined, let ξ(y) be as in (2.5). Then ξ still satisfies (2.6) and

by choosing A sufficiently large (and depending on C1) we may achieve

(

∂

∂yN
−C1 |y|

−2

)

ξ(y)>0, on ∂R
N
+ \B2A.

Fix any such A and choose ǫ>0 sufficiently small so that

(wi,λ−ǫξ)(y)>0, on (∂B2A∩RN
+)∪(∂Oi∩R

N
+).
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Then


















−∆(wi,λ−ǫξ)>0, in Oi\B2A,

(wi,λ−ǫξ)>0, on ∂(Oi\B2A)\∂RN
+ ,

(

∂

∂yN
−C1 |y|

−2

)

(wi,λ−ǫξ)<0, on (Oi\B2A)∩∂RN
+ .

(3.16)

Moreover, liminf|y|→∞(wi,λ−ǫξ)(y)≥ 0. Claim 3.4 now follows by the argument in the

proof of Lemma 2.3.

In view of Claims 3.3 and 3.4 and with R0 as in (3.12) we may choose c0>0 such that

wi,λ(y)≥ c0 |y|
2−N , for all y∈RN

+ \BR0
and all i∈ J.

Therefore, for any λ>0 and any i∈ J we have

wi,λ(y)=wi,λ(y)+wi,λ(y)−wi,λ(y)

≥c0 |y|
2−N+

(

λ
N−2

ui

(

λ
2
y

|y|2

)

−λN−2ui

(

λ2y

|y|2

))

|y|2−N , (3.17)

for all y∈RN
+\BR0

. By uniform continuity of ui on B
+
R0

, there exists ǫ0 ∈ (0,R0−λ) such

that
∣

∣

∣

∣

∣

λ
N−2

ui

(

λ
2
y

|y|2

)

−λN−2ui

(

λ2y

|y|2

)∣

∣

∣

∣

∣

<
c0

2
, for all y∈RN

+\BR0
, all λ∈[λ,λ+ǫ0] and all i∈ J.

Using this estimate in inequality (3.17), we conclude that

wi,λ(y)>
c0

2
|y|2−N , for all y∈RN

+ \BR0
, all λ∈ [λ,λ+ǫ0] and all i∈ J.

Combining this estimate with (3.12), we conclude that wi,λ(y)≥ 0 in RN
+\Bλ for all λ∈

[λ,λ+ǫ0] and all i∈ J. This contradicts the definition of λ. Lemma 3.2 is established.

Lemma 3.3. If there exists x0∈∂RN
+ for which λ(x0)=∞, then λ(x)=∞ for all x∈∂RN

+ .

Proof. Suppose x0 ∈ ∂RN
+ is such that λ(x0)=∞. By definition of λ(x0), for all λ> 0 we

have

ui(y)≥

(

λ

|y−x0|

)N−2

ui

(

x0+
λ2(y−x0)

|y−x0|
2

)

, in Σx0,λ for all i∈ J.

Consequently, |y|N−2ui(y)→∞ as |y|→∞ for all i∈ J. Now suppose x∈∂RN
+ is such that

λ(x)<∞. By Lemma 3.2, ui = ui,x,λ̄(x) on RN
+\{x} for all i∈ J. Multiplying this equality

by |y|N−2 and letting |y|→∞ we obtain

|y|N−2ui(y)→λ(x)N−2ui(x)<∞, for all i∈ J,

which is a contradiction.
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Lemma 3.4. For each x∈∂RN
+ , λ(x)<∞.

Proof. If Lemma 3.4 fails, then by Lemma 3.3, we have λ(x)=∞ for all x∈∂RN
+ . By Lemma

5.2, we see that for all i∈ J, ui(y) depends only on yN . In this case, (1.9) becomes



























u′′
i (t)=−

m

∏
j=1

uj(t)
aij , in (0,∞),

u′
i(0)= ci

m

∏
j=1

uj(0)
bij ,

ui(t)>0, on [0,∞),

for all i∈ J. (3.18)

Combining the first and third items of (3.18), we see that u′
i is strictly decreasing in (0,∞)

for all i∈ J.

Now, observe that there is no index i0 ∈ J for which u′
i0
(0)= 0. Indeed, if such an i0

were to exist then since u′
i0

is strictly decreasing, we would have u′
i0
(1)<0. By choosing t

sufficiently large we could achieve

ui0(t)=ui0(1)+
∫ t

1
u′

i0
(s)ds≤ui0(1)+u′

i0
(1)(t−1)<0,

which contradicts the third item of (3.18). By a similar argument, we see that there is no

index i0∈ J for which u′
i0
(0)<0. Therefore, we must have u′

i(0)>0 for all i∈ J. Moreover,

by an argument similar to the above, we see that

u′
i(t)>0, for all t∈ [0,∞) and all i∈ J.

In particular, u′
i is decreasing and bounded below by zero, so

ℓi = lim
t→∞

u′
i(t),

exists and is non-negative for all i∈ J. Since both ui(0)> 0 and u′
i(t)> 0 in [0,∞) for all

i∈ J, there exists ǫ>0 such that

ui(t)≥ǫ, for all t∈ [0,∞) and all i∈ J. (3.19)

In particular, this estimate implies ∏
m
j=1uj(t)

aij ≥ǫ(N+2)/(N−2), from which we deduce

m

∏
j=1

uj(t)
aij /∈ L1(0,∞). (3.20)

On the other hand, by the first equality of (3.18), we have

u′
i(t)−u′

i(0)=−
∫ t

0

m

∏
j=1

uj(s)
aij ds.
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Letting t→∞ in this equation we obtain

u′
i(0)−ℓi =

∫ ∞

0

m

∏
j=1

uj(s)
aij ds,

so that ∏
m
j=1 u

aij

j ∈L1(0,∞). This contradicts (3.20). Lemma 3.4 is established.

Proof of Proposition 3.1. Combine the results of Lemmas 3.2 and 3.4.

4 Completion of the proof of Theorem 1.3

By Proposition 3.1, for all x∈∂RN
+ , we have both λ(x)<∞ and

ui(y)=

(

λ(x)

|y−x|

)N−2

ui

(

x+
λ(x)2(y−x)

|y−x|2

)

, in RN
+\{x} for all i∈ J. (4.1)

Restricting this equality to RN−1=∂RN
+ , writing y=y′+yNeN with y′∈∂RN

+ and applying

Lemma 5.3 on RN−1, for each i∈ J we obtain Ai≥0, di >0 and x̄i ∈∂RN
+ such that

ui(y
′)=

Ai
(

d2
i +|y′− x̄i|

2
)(N−2)/2

, for all y′∈∂R
N
+ . (4.2)

By this expression and by (4.1), it is easy to see that

Ai= lim
|y′|→∞

∣

∣y′
∣

∣

N−2
ui(y

′)=λ(x)N−2ui(x)>0, for all x∈∂R
N
+ . (4.3)

Next, observe that

di =dj and x̄i = x̄j, for all (i, j)∈ J× J. (4.4)

Indeed, by (4.3) we have

ui(x)

Ai
=

uj(x)

Aj
, for all x∈∂R

N
+ and all (i, j)∈ J× J.

In view of (4.2), the above equality yields

d2
i +|x− x̄i|

2=d2
j +
∣

∣x− x̄j

∣

∣

2
, for all x∈∂R

N
+ and all (i, j)∈ J× J.

The equalities in (4.4) follow immediately.

Returning to (4.2) with (4.4), and using d to denote the common value of di and x̄ to

denote the common value of x̄i, we obtain
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ui(x)=
Ai

(

d2+|x− x̄|2
)(N−2)/2

, for all x∈∂R
N
+ and all i∈ J. (4.5)

Now that we know the form of the restriction of ui to ∂RN
+ , we wish to deduce the form of

ui. To achieve this we follow the arguments of [21–23]. Using (4.3) to replace Ai in (4.5),

we see that

λ(x)2=d2+|x− x̄|2 , for all x∈∂R
N
+ . (4.6)

Setting Q = x̄+deN and P = x̄−deN , Eq. (4.6) says that for each x ∈ ∂RN
+ , ∂B(x,λ(x))

contains both P and Q.

Next, for y∈RN consider

Ty=P+
4d2(y−P)

|y−P|2
, (4.7)

the conformal inversion of y about ∂B(P,2d). By performing elementary computations,

one may verify that T enjoys the following properties.

(i) T=T−1 on RN∪{∞},

(ii) T(RN
+)=B(Q,2d),

(iii) For each x∈∂RN
+ , the image of ∂B(x,λ(x)) under T is the hyperplane H(x) through

Q that is orthogonal to x−P.

(iv) If z and z̃ are symmetric about H(x), then Tz and Tz̃ are symmetric about ∂B(x,λ̄(x))
in the sense that

Tz̃= x+
λ̄(x)2(Tz−x)

|Tz−x|2
. (4.8)

See Fig. 4.1 for a visual representation of the mapping properties of T. For z∈ B(Q,2d)

∂RN
+

yN

x
P

Q

x

∂B(x,λ̄(x))

T

∂RN
+

yN

x
P

Q

x

H(x)=T
(

∂B(x,λ(x))
)

Figure 4.1: Visual representation of the properties of T
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and i∈ J, define

vi(z)=

(

2d

|z−P|

)N−2

ui(Tz). (4.9)

If x∈∂RN
+ , since ui is symmetric about ∂B(x,λ(x)) in the sense of Eq. (4.1), vi is symmetric

about H(x) in B(Q,2d). Indeed, fix x ∈ ∂RN
+ and suppose z, z̃ ∈ B(Q,2d) are symmetric

about H(x). By performing elementary computations using equations (4.1) and (4.8) we

obtain

vi(z)=

(

2d

|z−P|

)N−2( λ̄(x)

|Tz−x|

)N−2

ui(Tz̃)=vi(z̃).

Since this holds for all x∈∂RN
+ , vi is radially symmetric about Q in B(Q,2d).

Next, observe that the definition of vi may be extended to P such that the resulting

extension is continuous. Indeed, writing y=Tz for z∈B(Q,2d) and using (4.1) with x=x

we have

vi(z)=

(

|y−P|

2d

)N−2

ui(y)

=

(

|y−P|

2d

)N−2( λ̄(x)

|y−x|

)N−2

ui

(

x+
λ̄(x)2(y−x)

|y−x|2

)

.

Letting z→P from within B(Q,2d)\{P} (so that y→∞ from within RN
+) in this equality

and using λ(x̄)=d gives

lim
z→P;z∈B(Q,2d)\{P}

vi(z)=

(

1

2

)N−2

ui(x̄)>0. (4.10)

From now on, we identify vi with its extension to P.

By an elementary computation, vi is seen to satisfy



























∆vi+
m

∏
j=1

v
aij

j =0, in B(Q,2d),

∂vi

∂ν
(z)+

N−2

4d
vi(z)=−ci

m

∏
j=1

vj(z)
bij , on ∂B(Q,2d),

vi(z)>0, in B(Q,2d),

for all i∈ J, (4.11)

where ν is the outward unit normal vector on the boundary of B(Q,2d). Combining the

first and third items of (4.11) implies that vi is non-constant in B(Q,2d) for all i ∈ J. By

a simple maximum-principle argument and since vi is radial about Q we see that vi is

strictly decreasing about Q in B(Q,2d). Setting r= |z−Q| we have vi(z)=ψi(r) for some

smooth decreasing functions ψi : [0,2d)→ (0,∞). Using (4.10) and (4.11), these functions

are seen to satisfy
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ψ′′
i (r)+

N−1

r
ψ′

i(r)+
m

∏
j=1

ψj(r)
aij =0, for 0< r<2d,

ψ′
i(2d)+

N−2

4d
ψi(2d)=−ci

m

∏
j=1

ψj(2d)bij ,

ψi(2d)=22−Nui(x̄).

for all i∈ J. (4.12)

By the uniqueness of solutions to this system, there are positive constants α1,··· ,αm and

µ satisfying

logαi =
m

∑
j=1

aij logαj−log
(

µ2N(N−2)
)

, for all i∈ J (4.13)

such that

ψi(r)=
αi

(µ2+r2)(N−2)/2
, for all i∈ J.

Using this in Eq. (4.9) with z=Ty, we have

ui(y)=

(

|Ty−P|

2d

)N−2 αi
(

µ2+|Ty−Q|2
)(N−2)/2

=
βi

(

σ2+|y−y0|2
)(N−2)/2

, (4.14)

for all y∈RN
+ and all i∈ J, where

βi =

(

4d2

µ2+4d2

)(N−2)/2

αi, σ2 =µ2

(

4d2

µ2+4d2

)2

and y0= x−d
µ2−4d2

µ2+4d2
eN .

In particular, y0 is independent of i. For convenience, the details of the computation that

yields the second equality in (4.14) are provided in Lemma 5.4 of the appendix. By (4.13)

and the expressions of σ2 and βi, it is routine to verify that σ2 and β1,··· ,βm satisfy (1.6).

Moreover, by using both the second item of (4.12) and (4.13) one may verify that (1.10) is

satisfied.

5 Appendix

Lemma 5.1. Let R>0 and suppose v is a solution of



















−∆v≥0, in B+
R ,

∂v

∂yN
<0, on (∂B+

R ∩∂RN
+)\{0},

v>0, on B+
R \{0}.

Then v(y)≥min
∂BR∩RN

+
v for all y∈B+

R \{0}.
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Proof. Set mR=min
∂BR∩RN

+
v and fix 0<ǫ<R. Define

φ(y)=mR
ǫ2−N−|y|2−N

ǫ2−N−R2−N
, for ǫ≤|y|≤R.

One may easily verify that v−φ satisfies


















−∆(v−φ)≥0, in B+
R \Bǫ,

∂(v−φ)

∂yN
<0, on ∂(B+

R \Bǫ)∩∂RN
+ ,

v−φ≥0, on (∂BR∪∂Bǫ)∩RN
+ .

(5.1)

According to the maximum principle and the third item of (5.1), if v−φ is negative at any

point of B+
R \Bǫ, then there is x0∈∂RN

+∩{ǫ< |y|<R} such that

min
B+

R \Bǫ

(v−φ)=(v−φ)(x0)<0.

Moreover, since x0∈∂RN
+ is a minimizer of v−φ, we have ∂

∂yN
(v−φ)(x0)≥0. This violates

the second item of (5.1). We conclude that v≥φ in B+
R \Bǫ. Finally, if y∈B+

R \{0}, and if

0<ǫ< |y|/2 we have

v(y)≥mR
ǫ2−N−|y|2−N

ǫ2−N−R2−N
.

Letting ǫ→0 in this inequality gives the desired result.

The proofs of the following two lemmas can be found in [20, 21] or [22].

Lemma 5.2. Let f ∈C1(RN
+), N≥2 and b>0. If f satisfies

f (y)≥

(

λ

|y−x|

)b

f

(

x+
λ2(y−x)

|y−x|2

)

, for all y∈R
N
+ , x∈∂R

N
+ and λ>0,

then f (y)= f (yN eN) for all y∈RN
+ , where eN =(0,··· ,0,1).

Lemma 5.3. Let f ∈ C1(RN), N ≥ 1 and b > 0. Suppose that for every x ∈ RN , there exists

λ(x)>0 such that

(

λ(x)

|y−x|

)b

f

(

x+
λ(x)2(y−x)

|y−x|2

)

= f (y), for all y∈R
N \{x}.

Then there exists a≥0, d>0 and x̄∈RN such that

f (x)=±

(

a

d+|x̄−x|2

)b/2

.
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Lemma 5.4. Let µ, α1,··· ,αm be as in (4.13), let P=−deN and Q=deN and let T be as in (4.7).

If σ2, β1,··· ,βm and y0 are given by

βi =

(

4d2

µ2+4d2

)(N−2)/2

αi, σ2=µ2

(

4d2

µ2+4d2

)2

and y0= x−d
µ2−4d2

µ2+4d2
eN ,

then
(

|Ty−P|

2d

)N−2 αi
(

µ2+|Ty−Q|2
)(N−2)/2

=
βi

(

σ2+|y−y0|2
)(N−2)/2

.

Proof. The computation is elementary. Some details are provided for the convenience of

the reader. First, since |Ty−P|/(2d) = 2d/|y−P|, we consider the denominator on the

right-hand side of the equation

(

|Ty−P|

2d

)2 α
2/(N−2)
i

µ2+|Ty−Q|2
=

(2d)2α
2/(N−2)
i

|y−P|2
(

µ2+|Ty−Q|2
) . (5.2)

Using the definition of T in Eq. (4.7), the equality P−Q=−2deN and performing elemen-

tary computations yields

|y−P|2 |Ty−Q|2=4d2
(

|y−P|2−4d〈y−P,eN〉+4d2
)

=4d2
(

|y−P|2−4dyN

)

,

where 〈·,·〉 is the usual Euclidean inner product and yN is the Nth component of y. Next,

we use |y−P|2 = |y′− x̄|2+(yN+d)2 and the above equality to see that the denominator

of the right-hand side of (5.2) is

|y−P|2
(

µ2+|Ty−Q|2
)

=(µ2+4d2)|y−P|2−16d3

=(µ2+4d2)

[

∣

∣y′− x̄
∣

∣

2
+

(

yN+d
µ2−4d2

µ2+4d2

)2

+µ2

(

4d2

µ2+4d2

)2
]

=(µ2+4d2)

[

∣

∣

∣

∣

y−

(

x̄−d
µ2−4d2

µ2+4d2
eN

)∣

∣

∣

∣

2

+µ2

(

4d2

µ2+4d2

)2
]

.

Using this in (5.2) completes the proof of the lemma.
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