- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Harnack Inequality and Applications for Stochastic Retarded Differential Equations Driven by Fractional Brownian Motion
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-30-84,
author = {Liu , MinXu , LipingLi , Zhi and Chen , Zhong},
title = {Harnack Inequality and Applications for Stochastic Retarded Differential Equations Driven by Fractional Brownian Motion},
journal = {Journal of Partial Differential Equations},
year = {2017},
volume = {30},
number = {1},
pages = {84--94},
abstract = { In this paper, by using a semimartingale approximation of a fractional stochastic integration, the global Harnack inequalities for stochastic retarded differential equations driven by fractional Brownian motion with Hurst parameter 0 ‹ H ‹ 1 are established. As applications, strong Feller property, log-Harnack inequality and entropycost inequality are given.},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v30.n1.7},
url = {http://global-sci.org/intro/article_detail/jpde/5073.html}
}
TY - JOUR
T1 - Harnack Inequality and Applications for Stochastic Retarded Differential Equations Driven by Fractional Brownian Motion
AU - Liu , Min
AU - Xu , Liping
AU - Li , Zhi
AU - Chen , Zhong
JO - Journal of Partial Differential Equations
VL - 1
SP - 84
EP - 94
PY - 2017
DA - 2017/03
SN - 30
DO - http://doi.org/10.4208/jpde.v30.n1.7
UR - https://global-sci.org/intro/article_detail/jpde/5073.html
KW - Fractional Brownian motion
KW - Harnack inequality
KW - strong Feller property
AB - In this paper, by using a semimartingale approximation of a fractional stochastic integration, the global Harnack inequalities for stochastic retarded differential equations driven by fractional Brownian motion with Hurst parameter 0 ‹ H ‹ 1 are established. As applications, strong Feller property, log-Harnack inequality and entropycost inequality are given.
Min Liu, Liping Xu, Zhi Li & Zhong Chen. (2019). Harnack Inequality and Applications for Stochastic Retarded Differential Equations Driven by Fractional Brownian Motion.
Journal of Partial Differential Equations. 30 (1).
84-94.
doi:10.4208/jpde.v30.n1.7
Copy to clipboard