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Abstract. In this paper, by using a semimartingale approximation of a fractional stochas-
tic integration, the global Harnack inequalities for stochastic retarded differential equa-
tions driven by fractional Brownian motion with Hurst parameter 0<H<1 are estab-
lished. As applications, strong Feller property, log-Harnack inequality and entropy-
cost inequality are given.
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1 Introduction

Under a curvature condition, Wang [1] established the following type dimension-free

Harnack inequality for diffusion semigroups on a Riemannian manifold M:

(Pt f )α(y)≤ (Pt f α)(x)ec(t)ρ(x,y)2
, f ≥0, t>0, α>1, x,y∈M,

where c(t)>0 is explicitly determined by α and the curvature lower bound. This type of

inequality has been studied extensively, see, for example, Aida and Kawabi [2] and Aida

and Zhang [3] for infinite dimensional diffusion processes; Wang [4] for stochastic gener-

alized porous media equations; Röckner and Wang [5] for generalizes Mehler semigroup;

Abdelhadi et.al. [6] and Wang and Yuan [7] for stochastic functional equation; Liu [8] for

stochastic evolution equations with monotone drifts; Ouyang [9] for Ornstein-Uhnelbeck

processes and multivalued stochastic evolution equations etc.
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The Harnack inequality has various applications, see for instance, [5,10–12] for strong

Feller property and contractivity properties; [2, 3] for short times behaviors of infinite

dimensional diffusions; [13–15] for heat kernel estimates and entropy-cost inequalities.

[1, 5, 16] established Harnack inequalities using the method of derivative formula. In

order to establish the Harnack inequality for diffusions with curvature unbounded be-

low, the approach of coupling and Girsanov transformations are developed in [17]. This

method works also for infinite dimensional SPDE provided the noise is additive and

non-degenrate, see e.g. [4, 9, 18, 19] for Harnack inequalities for several different classes

of SPDE.

On the other hand, one solution for many SDEs is a semimartingale as well a Markov

process. However, many objects in real world are not always such processes since they

have long-range aftereffects. Since the work of Mandelbrot and Van Ness [20], there has

been an increased interest in stochastic models based on the fractional Brownian motion

than Brownian motion. A fractional Brownian motion (fBm) of Hurst parameter H∈(0,1)
is a centered Gaussian process BH ={BH(t),t≥0} with the covariance function

RH(t,s)=E(BH
t BH

s )=
1

2

(
t2H+s2H−|t−s|2H

)
.

When H=1/2 the fBm becomes the standard Brownian motion, and the fBm BH neither

is a semimartingale nor a Markov process if H 6=1/2. However, the fBm BH, H>1/2 is a

long-memory process and presents an aggregation behavior. The long-memory property

make fBm as a potential candidate to model noise in mathematical finance (see [21]);

in biology (see [22]); in communication networks (see, for instance [23]); the analysis of

global temperature anomaly [24] and electricity markets [25] etc.

Very recently, using derivative formula, the local Harnack inequalities in the sense

that |x−y| is bounded by a constant for the following stochastic differential equations

dX(t)=b(X(t))dt+dBH(t), X(0)= x,

driven by fractional Brownian motion with Hurst parameter 1/2<H<1 were established

by Fan in [26]. Subsequently, using the approach of coupling and Girsanov transforma-

tions to fractional Brownian motion with Hurst parameter 1/2<H<1, the global Harnack

inequalities for the following stochastic differential equations

dX(t)=b(t,X(t))dt+σ(t)dBH(t), X(0)= x,

driven by fractional Brownian motion with Hurst parameter 1/2 < H < 1 were estab-

lished by Fan in [27]. Furthermore, using Malliavin calculus, Fan [28] established Bismut

derivative formulae for the following stochastic differential equations

dX(t)=b(X(t))dt+σ(t)dBH(t), X(0)= x,

and functional stochastic differential equations

dX(t)=b(Xt)dt+σ(t)dBH(t), X0= ξ,
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driven by fractional Brownian motions with Hurst parameter 1/2< H < 1. As applica-

tions, the global Harnack type inequalities are presented.

However, in [28] the condition that b is Fréchet differentiable such that ∇b is bounded

and Lipschitz continuous seems to be relatively strong. On the other hand, as far as

I know, in the case that 1/2 < H < 1, using the approach of coupling for the segment

process and Girsanov transformations, in virtue of irregularity of the operator K−1
H , it is

very difficult to obtain the Harnack inequality. In [20], Mandelbrot et al. have given a

representation of BH
t of the form:

BH
t =

1

Γ(1+α)

(
U(t)+

∫ t

0
(t−s)αdWs

)
,

where α=H−1/2, U(t) is a stochastic process of absolutely continuous trajectories, and

WH
t :=

∫ t
0 (t−s)αdWs is called a fBm of the Liouville form (LfBm). Because a LfBm shares

many properties of a fBm (except that it has non-stationary increments) and for simplicity

we use WH
t standing for BH

t throughout this paper. In this paper, motivating mainly

by [29], using a semimartingale approximation of a fractional stochastic integration, we

desire to establish the global Harnack inequality for the segment process to the following

stochastic functional differential equations
{

dX(t)=b(X(t))dt+F(Xt)dt+σ(t)dWH
t ,

X0= ξ,

driven by fractional Brownian motion with Hurst parameter 0<H<1. As applications,

strong Feller property, log- Harnack inequality and entropy-cost inequality are derived.

The paper is organized as follows. In Section 2, we give some preliminaries on frac-

tional Brownian motion. In Section 3, we establish the Harnack inequality, and present

some applications.

2 Preliminaries

In the last few decades, many differential ways have been introduced to constructed the

fractional stochastic calculus (see, for instance, [30]). The main difficulties in studying

fractional stochastic systems are that we cannot apply stochastic calculus developed by

Itô since fBm is neither a Markov process nor a semimartingale, except for H = 1/2.

Recently, an approximate approach has been developed to avoid those difficulties (see,

[29, 31] and the references therein). Let us recall some fundamental results about this

approach.

Let (Ω,F ,{Ft}t≥0,P) be a filtered complete probability space satisfying the usual con-

dition, which means that the filtration is a right continuous increasing family and F0

contains all P-null sets. For every ε>0 we define

WH,ε
t =

∫ t

0
(t−s+ε)αdWs.
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In [31], author proved that WH,ε
t is a semimartingale with the following decomposition

WH,ε
t = εαWt+

∫ t

0
ϕε(s)ds, (2.1)

where ϕε(s) =
∫ s

0
α(s+ε−u)α−1dWu. Moreover, WH,ε

t converges to WH
t in Lp(Ω), p > 1

uniformly in t∈ [0,T] as ε→0 :

E|WH,ε
t −WH

t |p≤ cp,TεpH.

For f is a deterministic function in L2[0,T], from the decomposition (2.1) we have

∫ t

0
f (s)dWH,ε

s =
∫ t

0
εα f (s)dWs+

∫ t

0

∫ s

0
α f (s)(s+ε−u)α−1dWuds

=
∫ t

0
εα f (s)dWs+

∫ t

0

∫ t

s
α f (u)(u+ε−s)α−1dudWs.

(2.2)

As ε→ 0, each term in the right-hand side of (2.2) converges in L2(Ω) to the same term

where ε=0. Then, it is ‘natural’ to define.

Definition 2.1. For f is a deterministic function in L2[0,T]. The stochastic integral of f with

respect to LfBm is defined by

∫ t

0
f (s)dWH

s := lim
ε→0

∫ t

0
f (s)dWH,ε

s =α

∫ t

0

∫ t

s
α f (u)(u−s)α−1dudWs. (2.3)

Let r>0 be fixed, and let L=C([−r,0];R) be equipped with the uniform norm ‖ξ‖∞=
sup−r≤t≤0|ξ(t)|. We consider the following functional stochastic differential equation

driven by fractional Brownian motion on R,

{
dX(t)=b(X(t))dt+F(Xt)dt+σ(t)dWH

t ,

X0= ξ,
(2.4)

where ξ∈L, for each t≥0, Xt∈L is fixed as Xt(u)=X(t+u),u∈ [−r,0].
The aim of the paper is to consider the Harnack inequality for the equation (2.4). We

define

Pt f (ξ) :=E f (Xξ
t ), t∈ [0,T], f ∈Bb(L), (2.5)

where X
ξ
t is the solution to the equation (2.2) and Bb(L) denotes the set of all bounded

measurable functions on L.

3 Harnack inequality

Let us start with the following hypotheses:
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(H1) |b(x)−b(y)|≤K1|x−y|,∀x,y∈R, where K1>0 is a constant;

(H2) F is globally Lipschitz on L, i.e. for some K2>0,

|F(x)−F(y)|≤K2‖x−y‖∞ , ∀x,y∈L, t∈ [0,T].

(H3) σ(·) is reversible and the inverse is bounded, i.e. for any t∈R, there exists a

constant M>0 such that |σ−1|≤M.

Remark 3.1. For σ is a deterministic function in L2[0,T]. Using the same arguments as

in [32], we can easily prove that there exists a unique strong solution to equation (2.4)

under the assumption (H1) and (H2).

Now, we aim to establish Harnack inequality for PT.

Theorem 3.1. Let T>r, 0<H<1. If (H1)-(H3) hold, then the operator PT satisfies that for any

p>1, ξ,η∈L and nonnegative f ∈Bb(L),

(PT f (η))p ≤PT f p(ξ)exp
[ p

p−1
ρ(T,r,H,ξ,η)

]
, (3.1)

where

ρ(T,r,H,ξ,η)= inf
r<s≤T

ρ(T,r,s,H,ξ,η),

ρ(T,r,s,H,ξ,η)=M ·

{
K2‖ξ−η‖∞+K2eK1s|ξ(0)−η(0)|+

K1|ξ(0)−η(0)|

(1−e−K1(s−r))

}2 T2−2H

2−2H
.

Proof. The proof will be divided into three steps.

Step 1. As in [6] we shall employ a coupling argument. Let

G(x)=

{
x
|x|
|x|ε, if x 6=0,

0, if x=0.

Let process (Y(t))t≥0 solve the equation
{

dY(t)=b(Y(t))dt+F(Xt)dt+γ·G(X(t)−Y(t))dt+σ(t)dBH(t),

Y(0)=η(0),
(3.2)

and which we extend by Y(t)=η(t) for t∈ [−r,0). Note that

d(X(t)−Y(t))=(b(X(t))−b(Y(t)))dt−γ·G(X(t)−Y(t))dt.

Thus applying the Tanaka formula to |X(t)−Y(t)|, we have

d|X(t)−Y(t)|=sgn(X(t)−Y(t))d(X(t)−Y(t))

=sgn(X(t)−Y(t))(b(X(t))−b(Y(t)))dt−γ·|X(t)−Y(t)|ε dt.
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In view of (H1), for all t≥0 we get

d|X(t)−Y(t)|≤K1|X(t)−Y(t)|dt−γ·|X(t)−Y(t)|ε dt.

This implies that

d
(

e−K1t|X(t)−Y(t)|
)
≤−γe−K1t ·|X(t)−Y(t)|εdt.

Then, by virtue of the above inequality and the chain rule, we have that

d
(

e−K1t|X(t)−Y(t)|
)1−ε

=(1−ε)
(

e−K1t|X(t)−Y(t)|
)−ε

d
(

e−K1t|X(t)−Y(t)|
)

≤−γ(1−ε)e−K1t(1−ε)dt,
(

e−K1t|X(t)−Y(t)|
)1−ε

≤

(
|ξ(0)−η(0)|1−ε−

γ

K1
(1−e−K1t(1−ε))

)

+

.

Thus,

|X(t)−Y(t)|≤ eK1 t

(
|ξ(0)−η(0)|1−ε−

γ

K1
(1−e−K1t(1−ε))

)1/(1−ε)

+

. (3.3)

Hence, for s∈ (r,T], choosing

γ=γs=
K1|ξ(0)−η(0)|1−ε

(
1−e−K1(1−ε)(s−r)

) >0.

This implies X(t)=Y(t) for all t≥ s−r and Xt =Yt in C for all t≥ s.

Step 2. Let

u(t)=F(Xt)−F(Yt)+γ·G(X(t)−Y(t)), W̃H
t =

∫ t

0
σ−1(v)u(v)dv+WH

t .

Note that

|u(t)|≤K2‖Xt−Yt‖∞+γ|X(t)−Y(t)|ε.

Thus, we have

|u(t)|≤K2‖ξ−η‖∞+K2 sup
0≤v≤t

|X(v)−Y(v)|+γ|X(t)−Y(t)|ε .

Finally, letting ε→0, we obtain by (3.3)

|u(t)|≤K2‖ξ−η‖∞+K2eK1s|ξ(0)−η(0)|+
K1|ξ(0)−η(0)|

(1−e−K1(s−r))
. (3.4)
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According to integral representation of fractional Brownian motion we deduce for any

t∈ [0,T]

W̃H
t =

∫ t

0
σ−1(v)u(v)dv+WH

t

=
∫ t

0
σ−1(v)u(v)dv+

∫ t

0
(t−v)αdW(v)

=
∫ t

0
(t−v)α

(
σ−1(v)u(v)(t−v)−αdv+dW(v)

)

= :
∫ t

0
(t−v)αdW̃(v). (3.5)

Now, let

Rε(t)=exp
[
−
∫ t

0
σ−1(v)u(v)(t−v)−αdW(v)−

1

2

∫ t

0

(
σ−1(v)u(v)(t−v)−α

)2
dv

]
.

We want to show that (W̃H
t )0≤t≤T is an FW H

t -fractional Brownian motion with Hurst pa-

rameter H∈(0,1) under the new probability Q(dω)=Rε(t)P(dω). Due to [33], it suffices

to show that EPRε(T)=1. Notice that

∫ T

0

(
σ−1(v)u(v)(T−v)−α

)2
dv

≤‖σ−1‖∞ ·

{
K2‖ξ−η‖∞+K2eK1s|ξ(0)−η(0)|+

K1 |ξ(0)−η(0)|

(1−e−K1(s−r))

}2

·
T2−2H

H−2H

= : 2‖σ−1‖∞ρ(T,r,s,H,ε,η). (3.6)

As a consequence, we get

Eexp
[1

2

∫ T

0

(
σ−1(v)u(v)(T−v)−α

)2
dv

]
≤exp[ρ(T,r,s,H,ξ,η)]. (3.7)

Using the well-known Novikov criterion, one can have EP Rε(T)=1.

Step 3. From step 2, we can rewrite (3.2) in the following form

{
dY(t)=b(Y(t))dt+F(Yt)dt+σ(t)dW̃H

t ,

Y0=η,

where (W̃H
t )0≤t≤T is an FW H

t -fractional Brownian motion with Hurst parameter H under

the new probability Rε(T)P. By the uniqueness of the solution and XT=YT, a.s., we have

PT f (η)=EQ f (Y
η
T )=EQ f (Xξ

T)=EPRε(T) f (Xξ
T). (3.8)
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Applying the Hölder’s inequality to (3.8), we obtain

(PT f (η))p ≤PT f p(ξ)·(ERε(T)
p

p−1 )p−1. (3.9)

Now we will estimate moments of Rε(T).

Denote α= p/(p−1) and MT =−
∫ T

0
σ−1(v)u(v)(t−v)−αdWv. Since (Rε(t))0≤t≤T is a

P martingale, by (3.7) we have

ERε(T)
α=Eexp[αMT−

1

2
α〈M〉T]

=Eexp[αMT−
1

2
α2〈M〉T+

1

2
α(α−1)〈M〉T]

≤exp[α(α−1)ρ(T,r,H,ξ,η)]. (3.10)

Substituting (3.10) into (3.9), we get the desired result. The proof is complete now.

Remark 3.2. In [26], Fan established Harnack inequality for equation (2.4) of high dimen-

sions and multiplicative noise in one-dimension without delay by using the method of

derivative formula. However, the Harnack inequality established in [26] is local in the

sense that |x−y| is bounded by a constant. The Harnack inequality established in our

Theorem 3.1 is global. Furthermore, in our Theorem 3.1, the condition that

∇b(x)−∇b(y)≤K|x−y|, ∀x,y∈R,

is not required. Incidentally, when the condition ∇b(x)−∇b(y) ≤ K|x−y| is dropped

even in high dimensions, Fan [27] also established global Harnack inequality for equation

(2.4) without delay by using the approach of coupling and Girsanov transformations to

fractional Brownian motion with Hurst parameter 1/2<H<1.

For the operator PT,T≥0, defined in (2.5), it is called strongly Feller if PT maps Bb(L)
into Cb(L) for each t>0. Here Cb(L) is the space of all bounded continuous functions on

L. In general, the operator PT,T≥0, given in (2.5) might not have strongly Feller property

for all T > 0. However, as a direct application of the Harnack type inequalities derived

above, by Proposition 3.1 of [4] we get the strong Feller property on PT .

Corollary 3.1. Under the same conditions as in Theorem 3.1, the operator PT,T ≥ 0, given in

(2.5) is eventual strongly Feller in the sense that PT f (·) is a bounded continuous function on L
for each f ∈Bb(L) and T> r. Moreover, we have the following estimate,

|PT f (ξ)−PT f (η)|≤‖ f‖∞ [2ρ(T,r,H,ξ,η)]1/2exp[ρ(T,r,H,ξ,η)] (3.11)

for every T> r, ξ,η∈L and f ∈Bb(L).

As an immediate application of Theorem 3.1, by Corollary 1.2 of [34], we may also

establish the following result on log-Harnack inequality.
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Corollary 3.2. Under the same conditions as in Theorem 3.2, we have the following log-Harnack

inequality,

PT(log f )(η)≤ logPT f (ξ)+ρ(T,r,H,ξ,η)

for any ξ,η∈L, T> r and f ∈Bb(L) satisfying infξ∈L | f (ξ)|≥1.

To state further application of Theorem 3.2, let us introduce another assumption and

some notations.

(H4): let µ be a probability measure on L such that for some K̃>0,

µ(PT f )≤ K̃µ( f ), ∀ f ∈B
+
b (L).

Note that if µ is PT-invariant, then (H4) holds.

Remark 3.3. The measure µ satisfying (H4) always exist. For instance (see [35]),

µ=
∞

∑
n=1

1

2n
Pn

T(x,·), ∀x∈L,

where (Pn
T(x,·))n≥1 is defined recursively as follows

PT(x,A) :=PT IA(x), Pn
T(x,A) :=

∫

L
Pn−1

T (x,dy)PT(y,A), n≥2.

Let ’(µ,ν) denote the set of all couplings of µ and ν, where µ and ν are two given

probability on L, and Wδ
2 (µ,ν) be the L2-Wasserstein distance between them, i.e.

Wδ
2 (µ,ν)= inf

π∈’(µ,ν)

∫

L

∫

L
‖x−y‖2

∞π(dx,dy),

where δ(x,y)=‖x−y‖∞ is a distance on L.

Corollary 3.3. Assume that (H1) and (H2) hold and µ satisfies (H4) (K̃=1). Then the following

entropy-cost inequality holds for each T> r and f ∈B
+
b (L) with µ( f )=1,

µ(P∗
T f logP∗

T f )≤ρ′(T,r,H)Wδ
2 (µ, f µ),

where P∗
T is the adjoint operator of PT in L2(µ) and

ρ′(T,r,H)=‖σ−1‖∞

(
K2+K2eK1T+

K1

1−e−K1(T−r)

)2
T2−2H

2−2H
.

Proof. By Corollary 3.2 for P∗
T f , we have

PT(logP∗
T f )(ξ)≤ logPT(P∗

T f )(η)+ρ(T,r,H,ξ,η)

≤ logPT(P∗
T f )(η)+ρ′(T,r,H)‖ξ−η‖2

∞ , ∀ξ,η∈L. (3.12)
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Integrating both sides of (3.14) with respect to π∈ ϕ(µ, f µ), we get

µ(P∗
T f logP∗

T f )≤µ(logPT(P∗
T f ))+ρ′(T,r,H)

∫

L

∫

L
‖ξ−η‖2

∞π(dξ,dη).

Note that, the Jensen’s inequality and the hypotheses imply

µ(logPT(P∗
T f ))≤ logµ(PT(P∗

T f ))≤ logµ(P∗
T f )= logµ( f PT1)= logµ( f )=0.

So, we get

µ(P∗
T f logP∗

T f )≤ρ′(T,r,H) inf
π∈’(µ, f µ)

∫

L

∫

L
‖ξ−η‖2

∞π(dξ,dη).

The proof is complete.
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[18] Prato G. Da, Röckner M., Wang F. Y., Singular stochastic equations on Hilbert spaces: Har-
nack inequalities for their transition semigroups. J. Funct. Anal. 257 (2009), 992-1017.

[19] Liu W., Wang F. Y., Harnack inequality and strong Feller property for stochastic fast diffusion
equations. J. Math. Anal. Appl. 342 (2008), 651-662.

[20] Mandelbrot BB., Ness J. Van, Fractional Brownian motion, fractional noises and applications.
SIAMRev. 10 (4) (1968), 422-437.

[21] Comte F., Renault E., Long memory continuous time models. J. Econometrics. 73 (1) (1996),
101-149.

[22] La F. De, Perez-Samartin AL., Matnez L., Garcia MA., Vera-Lopez A., Long-range correla-
tions in rabbit brain neural activity. Ann Biomed Eng February. 34 (2) (2006), 295-299.

[23] Willinger W., Leland W., Taqqu M. and Wilson D., On self-similar nature of ethernet traffic.
IEEE/ACM Trans Networking. 2 (1) (1994), 1-15.

[24] Rypdal M., Rypdal K., Testing hypotheses about sun-climate complexity linking. Phys Rev
Lett. 104 (12) (2010), 128-151.

[25] Simonsen I., Measuring anti-correlations in the nordic electricity spot market by wavelets.
Physica A. 322 (1) (2003), 597-606.

[26] Fan X. L., Derivative formula, integration by parts formula and applications for SDEs driven
by fractional Brownian motion. arXiv:1206.0961. 2012.

[27] Fan X. L., Harnack type inequalities and applications for SDE driven by fractional Brownian
motion. Stochastic Analysis and Applications. 32 (2014), 602-618.

[28] Fan X. L., Integration by parts formula and applications for SDE driven by Fractional Brow-
nian motion. Stochastic Analysis and Applications. 33 (2015), 199-212.

[29] Thao T. H., An approximation approach fractional analysis for finance. Nonlinear Analysis. 7
(2006), 124-132.

[30] Coutin L., An introduction to stochastic calculus with respect to fractional Brownian motion,
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