- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Remarks on Blow-Up Phenomena in $p$-Laplacian Heat Equation with Inhomogeneous Nonlinearity
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-34-42,
author = {Alzahrani , Eadah Ahmad and Majdoub , Mohamed},
title = {Remarks on Blow-Up Phenomena in $p$-Laplacian Heat Equation with Inhomogeneous Nonlinearity},
journal = {Journal of Partial Differential Equations},
year = {2021},
volume = {34},
number = {1},
pages = {42--50},
abstract = {
We investigate the $p$-Laplace heat equation $u_t-\Delta_p u=ζ(t)f(u)$ in a bounded smooth domain. Using differential-inequality arguments, we prove blow-up results under suitable conditions on $ζ,$ $f,$ and the initial datum $u_0$. We also give an upper bound for the blow-up time in each case.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v34.n1.3}, url = {http://global-sci.org/intro/article_detail/jpde/18553.html} }
TY - JOUR
T1 - Remarks on Blow-Up Phenomena in $p$-Laplacian Heat Equation with Inhomogeneous Nonlinearity
AU - Alzahrani , Eadah Ahmad
AU - Majdoub , Mohamed
JO - Journal of Partial Differential Equations
VL - 1
SP - 42
EP - 50
PY - 2021
DA - 2021/01
SN - 34
DO - http://doi.org/10.4208/jpde.v34.n1.3
UR - https://global-sci.org/intro/article_detail/jpde/18553.html
KW - Parabolic problems, $p$-Laplacian equation, blow-up, positive initial energy.
AB -
We investigate the $p$-Laplace heat equation $u_t-\Delta_p u=ζ(t)f(u)$ in a bounded smooth domain. Using differential-inequality arguments, we prove blow-up results under suitable conditions on $ζ,$ $f,$ and the initial datum $u_0$. We also give an upper bound for the blow-up time in each case.
Alzahrani , Eadah Ahmad and Majdoub , Mohamed. (2021). Remarks on Blow-Up Phenomena in $p$-Laplacian Heat Equation with Inhomogeneous Nonlinearity.
Journal of Partial Differential Equations. 34 (1).
42-50.
doi:10.4208/jpde.v34.n1.3
Copy to clipboard