- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Structural Stability of p(x)-Laplace Problems with Fourier Type Boundary Condition
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-32-229,
author = {Kansie , Kpe and Ouaro , Stanislas},
title = {Structural Stability of p(x)-Laplace Problems with Fourier Type Boundary Condition},
journal = {Journal of Partial Differential Equations},
year = {2019},
volume = {32},
number = {3},
pages = {229--268},
abstract = {
We study the continuous dependence on coefficients of solutions of the nonlinear nonhomogeneous Fourier boundary value problems involving the p(x)-Laplace operator.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v32.n3.3}, url = {http://global-sci.org/intro/article_detail/jpde/13341.html} }
TY - JOUR
T1 - Structural Stability of p(x)-Laplace Problems with Fourier Type Boundary Condition
AU - Kansie , Kpe
AU - Ouaro , Stanislas
JO - Journal of Partial Differential Equations
VL - 3
SP - 229
EP - 268
PY - 2019
DA - 2019/10
SN - 32
DO - http://doi.org/10.4208/jpde.v32.n3.3
UR - https://global-sci.org/intro/article_detail/jpde/13341.html
KW - Generalized Lebesgue and Sobolev spaces
KW - Leray-Lions operator
KW - weak solution
KW - renormalized solution
KW - Thermorheological fluids
KW - continuous dependence
KW - Fourier type boundary condition
KW - Young measures.
AB -
We study the continuous dependence on coefficients of solutions of the nonlinear nonhomogeneous Fourier boundary value problems involving the p(x)-Laplace operator.
Kpe Kansie & Stanislas Ouaro. (2019). Structural Stability of p(x)-Laplace Problems with Fourier Type Boundary Condition.
Journal of Partial Differential Equations. 32 (3).
229-268.
doi:10.4208/jpde.v32.n3.3
Copy to clipboard