- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 12 (2012), pp. 479-493.
Published online: 2012-12
Cited by
- BibTex
- RIS
- TXT
We extend the immersed boundary (IB) method to simulate the dynamics of a 2D dry foam by including the topological changes of the bubble network. In the article [Y. Kim, M.-C. Lai, and C. S. Peskin, J. Comput. Phys. 229: 5194-5207, 2010], we implemented an IB method for the foam problem in the two-dimensional case, and tested it by verifying the von Neumann relation which governs the coarsening of a two-dimensional dry foam. However, the method implemented in that article had an important limitation; we did not allow for the resolution of quadruple or higher order junctions into triple junctions. A total shrinkage of a bubble with more than four edges generates a quadruple or higher order junction. In reality, a higher order junction is unstable and resolves itself into triple junctions. We here extend the methodology previously introduced by allowing topological changes, and we illustrate the significance of such topological changes by comparing the behaviors of foams in which topological changes are allowed to those in which they are not.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.181210.080811s}, url = {http://global-sci.org/intro/article_detail/cicp/7300.html} }We extend the immersed boundary (IB) method to simulate the dynamics of a 2D dry foam by including the topological changes of the bubble network. In the article [Y. Kim, M.-C. Lai, and C. S. Peskin, J. Comput. Phys. 229: 5194-5207, 2010], we implemented an IB method for the foam problem in the two-dimensional case, and tested it by verifying the von Neumann relation which governs the coarsening of a two-dimensional dry foam. However, the method implemented in that article had an important limitation; we did not allow for the resolution of quadruple or higher order junctions into triple junctions. A total shrinkage of a bubble with more than four edges generates a quadruple or higher order junction. In reality, a higher order junction is unstable and resolves itself into triple junctions. We here extend the methodology previously introduced by allowing topological changes, and we illustrate the significance of such topological changes by comparing the behaviors of foams in which topological changes are allowed to those in which they are not.