Ranging from Re=100 to Re=20,000, several computational experiments are
conducted, Re being the Reynolds number. The primary vortex stays put, and the long-term dynamic behavior of the small vortices determines the nature of the solutions. For
low Reynolds numbers, the solution is stationary; for moderate Reynolds numbers, it is
time periodic. For high Reynolds numbers, the solution is neither stationary nor time
periodic: the solution becomes chaotic. Of the small vortices, the merging and the
splitting, the appearance and the disappearance, and, sometimes, the dragging away
from one corner to another and the impeding of the merging—these mark the route
to chaos. For high Reynolds numbers, over weak fundamental frequencies appears
a very low frequency dominating the spectra—this very low frequency being weaker
than clear-cut fundamental frequencies seems an indication that the global attractor
has been attained. The global attractor seems reached for Reynolds numbers up to
Re=15,000. This is the lid-driven square cavity flow; the motivations for studying this
flow are recalled in the Introduction.