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Abstract. In this paper we develop a deterministic numerical method for solving the
Boltzmann transport equation for semiconductors based on a transport-collision time-
splitting method. Transport phases are solved by means of accurate flux-balance meth-
ods while collision steps are computed in the original k-grid. Numerical experiments
are shown allowing for a discussion of this method with respect to other present in the
literature.
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1 Introduction

The semi-classical Boltzmann transport equation (BTE) is a mesoscopic description of the
transport/collision of charged particles in an electronic device and is given by

∂ f

∂t
+

1

h̄
∇kε·∇x f − q

h̄
E·∇k f =Q[ f ], (1.1)

where f (t,x,k) measures the probability density of finding an electron at time t in position
x with wave vector k. The parameter h̄ is the Planck constant divided by 2π and q is the
positive elementary charge.
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The band structure of the semiconductor crystal is described by the energy-band func-
tion which can be approximated by a parabolic function given by

ε(k)=
1

2

h̄2

m∗ |k|
2, (1.2)

where m∗ is the effective electron mass. In a first step, we shall consider the most impor-
tant scattering mechanisms in Si: acoustic phonon scattering, in its elastic approximation,
and optical phonon scattering with a single frequency ω. Therefore, the structure of the
collision operator [20, 24] is

Q[ f ](t,x,k) =
∫

R3

[
S(k′,k) f (t,x,k′)−S(k,k′) f (t,x,k)

]
dk′

=
∫

R3
S(k′,k) f (t,x,k′)dk′− f (t,x,k)

∫

R3
S(k,k′)dk′

=Q+[ f ]−Q− [ f ] (1.3)

with

S(k,k′)=K
[
(nq+1)δ(ε(k′)−ε(k)+ h̄ω)+nqδ(ε(k′)−ε(k)− h̄ω)

]
+K0δ(ε(k′)−ε(k)), (1.4)

where nq is the occupation number of phonons

nq =
1

exp
(

h̄ω
kBTL

)

−1
, (1.5)

kB is the Boltzmann constant and TL the lattice temperature. The kernel K0 is

K0 =
kBTLE2

ac

4π2h̄ul
2ρ0

, (1.6)

where Eac is the deformation potential, ul is the sound velocity and ρ0 is the crystal den-
sity. The kernel K is

K =
Dtk

2

8π2h̄ρ0ω
, (1.7)

where ω is the frequency and Dtk is the optical coupling constant. The self-consistent
electrostatic field is computed through Poisson’s equation

∆Φ=
q

ǫ
[ρ(t,x)−ND(x)], (1.8)

where ρ is the electron density

ρ(t,x)=
∫

R3
f (t,x,k)dk, (1.9)
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ǫ is the Silicon dielectric permittivity (ǫ= ǫrǫ0 with ǫ0 the vacuum dielectric permittivity
and ǫr the Silicon relative dielectric permittivity), ND(x) represents the doping profile,
which takes into account the injected impurities in the semiconductor lattice. The solu-
tion Φ(t,x) of Poisson’s equation gives the electrostatic potential, so that the electrostatic
field is given by

E(t,x)=−∇xΦ(t,x). (1.10)

Further information about semiconductor modelling and related mathematical issues can
be found in [17].

This system has been traditionally solved by means of Direct Simulation Monte Carlo
(DSMC) methods due to the easy incorporation of new physical effects by means of
adding suitable scattering operators and its efficiency in two and three-dimensional de-
vices [24]. Nevertheless, direct deterministic numerical methods have been recently pro-
posed in the literature [4,5,11,16,18,19] improving and complementing some features of
the DSMC methods: noise-free results, detailed information of the distribution functions,
transient description, different materials, see, e.g., [2, 10, 13]. We refer to [1, 4, 5, 10, 12] for
a complete discussion of these issues and to [3] for a review of the state of the art in the
deterministic numerical simulation of the Boltzmann-Poisson system.

In this work, we propose a new deterministic numerical scheme for this system. In
contrast with the approach in [4,16], we work in the original coordinates (t,x,k) by using
a splitting strategy decoupling transport from collision. For the transport part, we apply a
semi-lagrangian numerical method based on a nonlinear local essentially non-oscillatory
interpolation method recently developed in [6] for transport-like kinetic equations. The
main objective of this choice is to avoid the potentially restrictive CFL condition emanat-
ing from the use of finite-differences WENO methods in energy and angular variables
in [4, 5] but keeping a good control of possible oscillations during the transport steps.

The collisional step is performed by interpolation from computed values on a carte-
sian grid to obtain the missing values of the distribution function on the surfaces of equal
energy needed for the evaluation of the collision operator Q( f ). Different interpola-
tion procedures have been tested from the simplest and less accurate direct linear inter-
polation to the most advanced nonlinear local essentially non-oscillatory interpolation
method in [6] as above. Conservation of mass in the collision steps is enforced by re-
defining the loss operator as in [2]. The different choices for interpolation in the collision
step and the splitting of the operators will be discussed and compared.

This new deterministic scheme is developed in Section 2 while Section 3 is devoted
to show its performance to compute steady and transient states of 1d devices and com-
parisons to the numerical scheme introduced in [4]. The main advantage of this scheme
being the smaller number of time steps needed and the much better definition of the
distribution function in phase space. Moreover, more realistic collision operator for Si
takes into account the different equivalent valleys in the conduction band of Si leading
to several optical-phonon scattering operators with different frequencies h̄ω and optical
coupling constants Dtk, see for instance [15] and the references therein. Finally, we will
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show a comparison of our results in this case to multi-group WENO results as in [12].
This numerical scheme is based on the use of the cell average method for treating the
dependence of the electron distribution function on the three-dimensional wave vector
and a fifth-order WENO solver for dealing with the physical space variables.

2 Pointwise WENO time splitting scheme for the BP equation

Let us first reduce the BP system to dimensionless cartesian coordinates. We assume that
the doping profile, the potential and thus the force field are only x-dependent in space
and thus, our device spans over the x-direction. Let us use the following adimensional-
ization of the BP system:

adim. parameter 400 nm device 50 nm device

k̃=k∗k k∗ =

√
2m∗kbTL

h̄ 4.65974×108m−1 4.65974×108m−1

x̃ = l∗x l∗=device length 1 µm 250 nm

t̃= t∗t t∗= typical time 1 ps=10−12s 1 ps=10−12s

Ṽ(x̃)=V∗V(x) V∗ = typical Vbias 1V 1V

Ẽ(x̃)=E∗E(x) E∗= 1
10

V∗
l∗ 100000Vm−1 400000Vm−1

ε̃(k̃)= ε∗ε(k) ǫ∗= h̄2k∗2

2m∗ 4.14195e−21 4.14195e−21

ρ̃(x̃)=ρ∗ρ(x) ρ∗=
(

2m∗kBTL
h̄

)3/2
1.01178×1026 1.01178×1026

j̃(x̃)= j∗ j(x) j∗= 1
l∗2t∗

1024 1.6×1025

ũ(x̃)=u∗u(x) u∗= l∗
t∗ 106 250000

W̃(x̃)=W∗W(x) W∗ =(l∗/t∗)2 1012 6.25×1010

.

where tildes are written over dimensional magnitudes. Numerical values for all the pa-
rameters and the constants involved in the computations, as well as a resumé of all the
dimensionless equations, can be found in the appendix. The BP equation transforms into

∂ f

∂t
+cx

∂ε

∂k1

∂ f

∂x
−ckEx

∂ f

∂k1
=Q[ f ], (2.1)

where the dimensionless parameters are

cx =
t∗ε∗

h̄k∗l∗
, ck =

qt∗E∗

h̄k∗
.

The electrostatic field is self-consistently computed by the rescaled Poisson equation

∂2Φ

∂x2
= cp [ρ(t,x)−ND(x)], cp =

qρ∗l∗2

ǫΦ∗ ,

coupled with appropriate boundary values (Φ(0)=0, Φ(L)=Vbias).
The advantage of conserving the cartesian structure is that, thanks to the time splitting

techniques [7, 23], we can apply the semi-lagrangian based Flux Balance Method [6, 9] to
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solve each transport step, which would be more involved in the energy-band adapted
coordinates [4], the energy flux resulting to be energy-dependent. On the other hand,
we have to deal with a more complicated computation of the collisional part: instead
of being a simple evaluation, like in [4] we shall need to reconstruct the values of the
probability density f along a circle in the k-dimension.

In order to integrate the collisional part, we use that f only depends on k1 and k23 =

‖(k2,k3)‖=
√

k2
2+k2

3, i.e., f (k1,k2,k3)= f (k1,k23) due to symmetry considerations for this

one-dimensional device. Using a change to polar coordinates in the (k2,k3)-plane, after
straightforward computations, we obtain for the gain and the loss part of the collision
operator Q( f ) the following expressions:

Q+[ f ]= c0 π
∫
√

γ0(k)

−
√

γ0(k)
f

(

k′1,

√

γ0(k)−k′21

)

dk′1+c+π
∫
√

γ+(k)

−
√

γ+(k)
f

(

k′1,

√

γ+(k)−k′21

)

dk′1

+χ{γ−(k)>0}c−π
∫
√

γ−(k)

−
√

γ−(k)
f

(

k′1,

√

γ−(k)−k′21

)

dk′1, (2.2)

with γ0(k)= ε(k), γ+(k)= ε(k)+hω/ε∗, γ−(k)= ε(k)− h̄ω/ε∗, and

Q−[ f ]= c02π
√

γ0(k) f (k)+χ{γ−(k)>0}c+2π
√

γ−(k) f (k)+c−2π
√

γ+(k) f (k),

with the dimensionless parameters

c0 =
K0t∗k∗3

ε∗
, c+ =

Kt∗(nq+1)k∗3

ε∗
, c−=

Kt∗nqk∗3

ε∗
.

In the next subsections, we shall explain in detail both the transport and the collision
steps in this method. Let us finally comment that Poisson’s equation is solved through a
standard centered finite differences leading to solving a linear system with a tridiagonal
matrix.

2.1 Numerical scheme

Eq. (2.1) is solved through a time splitting scheme dividing the system into the solution
of transport steps and collision steps being the time stepping fixed. The computational
domain is discretized into a tensor product mesh, and a uniform mesh is taken in each
direction: tn =n∆t, and

xi = i∆x, i=0,··· ,Nx−1, ∆x= 1
Nx−1 ,

(k1)j =−ε−1(αN̄)+ j∆k1, j=0,··· ,Nk1
−1, ∆k1 = 2ε−1(αN̄)

Nk1
−1 ,

(k23)k = k∆k23 , k=0,··· ,Nk23
−1, ∆k23 = ε−1(αN̄)

Nk23
−1 ,
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Boltzmann

x−dim advection

advection

∆ t
2

∆ t

∆ t
2

∆ t
2

∆ t

∆ t
2

operator

 Transport term

k1−dim

Figure 1: Time splitting scheme, see Appendix (Subsection A.2) for a fully detailed splitting scheme.

where α is the dimensionless energy α = h̄ω/kBTL. Here, N̄ is an integer chosen as a
maximal bound for the adimensionalized energy-band function

ε(k)=(k1)
2+(k2)

2+(k3)
2 =(k1)

2+(k23)
2 = ε[k1,k23].

More precisely, at the value N̄α

ε
[

(k1)Nk1
−1,0

]

= N̄α, ε
[

0,(k23)Nk23
−1

]

= N̄α,

a magnitude which is related to the resolution in the (k1,k23)-space.
The approximation denoted by f n

i,j,k to the point values of f
(
tn,xi,(k1)j,(k23)k

)
are

obtained through the second order time splitting scheme [7] subdividing the BP system
(2.1):

• Step 1. Solve
∂ f

∂t
+cx

∂ε

∂k1

∂ f

∂x
−ckEx

∂ f

∂k1
=0 for a ∆t/2-time step;

• Step 2. Solve
∂ f

∂t
=Q[ f ] for a ∆t-time step;

• Step 3. Solve
∂ f

∂t
+cx

∂ε

∂k1

∂ f

∂x
−ckEx

∂ f

∂k1
=0 for a ∆t/2-time step.

The same procedure is used for solving the two transport steps

∂ f

∂t
+cx

∂ε

∂k1

∂ f

∂x
−ckEx

∂ f

∂k1
=0

by dimensional splitting. Therefore, we have subdivided the problem into the solution
of the x-transport, the k-transport and the collision:

∂ f

∂t
+

x-transport
︷ ︸︸ ︷

cx
∂ε

∂k1

∂ f

∂x
−

k-transport
︷ ︸︸ ︷

ckEx
∂ f

∂k1
︸ ︷︷ ︸

transport

= Q[ f ]
︸︷︷︸

collisions

as sketched in Fig. 1 and fully specified in the Appendix (Subsection A.2).
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Remark 2.1 (Time Splittings). In principle, the above time splitting procedure (TS) may
seem unnecessary complicated due to the splitting of three different operators. Actually,
the use of a direct first-order splitting, as reminded to the reader in Subsection A.3, would
seem appropriate for simplicity. In Section 3 we will compare the results for both splitting
algorithms, and we will show that results given by the above splitting procedure improve
the ones given by the first-order splitting.

Numerical scheme: transport step

Each transport block is solved by the Flux Balance Method [6, 9]: when solving the x-
transport, k1 and k23 act as parameters, as well as x and k23 when solving the k1-transport.
This method is based on the semi-lagrangian approach of following the characteristics
backwards; the improvement is that we force the mass conservation, unlike the direct
method, which gives no guarantee about this point. The solution of the x-transport gives

f ∗∗i,j,k = f ∗i,j,k+
1

∆x
{[F(xi−1/2)−F(xi−1/2−cx∇kε∆t)]

− [F(xi+1/2)−F(xi+1/2−cx∇kε∆t)]}, F(x)=
∫ x

0
f ∗

[
ξ,(k1)j,(k23)k

]
dξ,

and, as for the solution of the k1-transport,

f ∗∗i,j,k = f ∗i,j,k+
1

∆k1

{[
F((k1)j−1/2)−F((k1)j−1/2+ckE∆t)

]

− [F((k1)i+1/2)−F((k1)i+1/2+ckE∆t)]}, F(k1)=
∫ k1

0
f ∗ [xi,ξ,(k23)k]dξ.

More details about the FBM method can be found in [6,9]. In order to compute the fluxes,
for instance,

F(xi+1/2)−F(xi+1/2−cx∇kε),

we reconstruct the values F(xi+1/2−cx∇kε), given the known values of the primitive at
the grid points F(xi+1/2), by the fifth order Pointwise WENO-6,4 interpolation summa-
rized in next subsection.

Numerical scheme: collision step

In order to solve the collision step, we need to compute some integrals along semicircles
of radius γ0(k), γ+(k) and γ−(k) in the (k1,k23)-space. Fig. 2 explains two different ways
in which we can perform it. We may first use a direct linear interpolation between the
closest points in the cartesian grid as specified in Fig. 2 (left). The integration rule to
compute the final approximation of (2.2) is coherently chosen in terms of accuracy as the
trapezoidal rule.

On the other hand, we can choose a WENO-4,3 interpolation along the k1 = (k1)j

line where the point lies as in Fig. 2 (right). This interpolation is performed on the
stencil ((k1)j,(k23)l−1),··· ,((k1)j,(k23)l+2). If not enough points are available (i.e., l = 0
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k1 k1

k23
k23

m+1

m+2

m

m−1

lfifi−1 fi+1 fi+2

SS

S

S

0

0

1

1

U

L R

D

l

m

m+1

fi fi+1

Figure 2: The integration on the interval [−√
γ,
√

γ]. Left: the needed values are obtained through a linear
interpolation on the two closest points lying either on the k23 = 0 line (for the first and last point) or on the
k1 = l line (for the other points). Right: the needed values are obtained through PWENO-4,3 interpolation on
the closest points lying either on the k23 =0 line (for the first and last point) or on the k1 = l line (for the other
points).

or l ≥ Nk23
−2), we use Lagrange-3 on the proper stencil. Consistently with a degree-2

polynomial interpolation, as integration rule for (2.2), we choose Simpson’s rule. This
WENO-4,3 interpolation procedure will be detailed in next subsection. A similar inter-
polation procedure was used in [21] to cope with analogous problems in a computational
fluid dynamics problem.

We can now explain the implemented boundary conditions:

• at x=0 and x= L we use the following inflow/outflow condition:

f n
−i,j,k =







f n
0,j,k, k1 <0,

ND(0)

ρ(0)
f n
0,j,k, k1 ≥0,

and

f n
Nx−1+i,j,k =







f n
Nx−1,j,k, k1 >0,

ND(L)

ρ(L)
f n
Nx−1,j,k, k1 ≤0,

in order to have the ghost points we need for the PWENO interpolation and to
preserve the correct values of the distribution function at the drain and the source
of the diode;

• at k1 =−ε−1(αN̄) and k1 = ε−1(αN̄) a Neumann type boundary condition in used:

f n
i,−j,k = f n

i,0,k and f n
i,Nk1

−1+j,k = f n
i,Nk1

−1,k.

While in the transport steps the mass conservation is guaranteed by the Flux Balance
Method being conservative, during the collision steps we numerically impose the mass
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i−2 i−1 i i+1 i+2 i+3

S
S

S
S

0

1

2

x

p

p
p

p

2

1

0

Figure 3: WENO-6,4 interpolation: the stencil Sr corresponds to the points interpolated by the 3-degree
Lagrange polynomial pr(x). The whole stencil S=∪2

r=0Sr is interpolated by the 5-degree Lagrange polynomial
p(x). The smoothness indicators βr depend on the derivatives of pr(x) in the central interval (xi ,xi+1) (between
the dashed lines).

conservation by redefining the collision operator by

Q[ f ]=Q+ [ f ]−
∫

R3Q+[ f ]dk
∫

R3Q−[ f ]dk
Q−[ f ].

2.2 PWENO-6,4 interpolation

PWENO (Pointwise Weighted Essentially Non Oscillatory) methods have been devel-
oped [6] in order to compute a direct interpolation (i.e. we want to reconstruct the values
of the very function, we do not want values by which we reconstruct high-order deriva-
tives, like in the case of WENO methods for finite differences [14, 22]) which avoids La-
grange spurious oscillations produced where high derivatives appear. Here we just in-
troduce WENO-6,4 method (its order is 5), a centered interpolation based on a six points
stencil.

PWENO-6,4 interpolation is a convex combination by {ωr(x)}r=0,1,2 of the reconstruc-
tion given by three Lagrange polynomials {pr(x)}r=0,1,2:

pW(x)=ω0(x)p0(x)+ω1(x)p1(x)+ω2(x)p2(x),

like we see in Fig. 3. We wish to obtain a non-oscillatory reconstruction when the func-
tion to be interpolated is “irregular”, i.e. when high gradients appear. Once we have a
measurement of its regularity by the smoothness indicators {βr}r=0,1,2, we shall need to
define other weights {dr(x)}r=0,1,2 in order to push the interpolation to the highest order
in the case of a smooth function, i.e. in order to rescue a Lagrange-like behavior, which is
order 6, the highest. Weights ωr are the normalization (by ω0(x)+ω1(x)+ω2(x)= 1) of
the protoweights

ω̃r(x)=
dr(x)

(ǫ+βr)p
, ǫ small and positive, in the code ǫ=10−6. (2.3)
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The positive parameter ǫ is needed in order to avoid the denominator to be zero, and it
must be small so as not to perturb the desired behavior of the weights. In the literature
ǫ = 10−6, because it is reasonable for numerical computing. Exponent p is set p = 2;
changing it means modifying the relative presence of the regular and irregular stencils.

We can now define “irregular” a function whose βr are different orders, and “regular”
a function whose βr are same order. Remark that if β0=β1=β2 then ωr(x)=dr(x), i.e. we
would obtain exactly the highest order Lagrange interpolation, as it will be made clear
later on by equation (2.4).

The following smoothness measurement was proposed by Jiang and Shu in [14]:

βr =
3

∑
l=1

∆x2l−1

∥
∥
∥
∥

dl

dxl
pr

∥
∥
∥
∥

2

L2(xi,xi+1)

for r=0,1,2.

This is a sort of Sobolev norm, where the weights ∆x2l−1 are needed to make all the
terms of the sum independent of ∆x, i.e., to make them all be of the same order. After
straightforward calculations, we have







β0 =
248

15
f 2
i+2−

2309

60
fi+1 fi+2+

439

30
fi fi+2−

553

60
fi+2 fi+3+

721

30
f 2
i+1

−1193

60
fi fi+1+

103

10
fi+1 fi+3+

407

90
f 2
i −

683

180
fi fi+3+

61

45
f 2
i+3,

β1 =
61

45
f 2
i+2+

61

45
f 2
i−1+

179

30
fi−1 fi+1−

141

20
fi−1 fi−

293

180
fi−1 fi+2

−141

20
fi+1 fi+2+

179

30
fi fi+2+

331

30
f 2
i+1−

1259

60
fi fi+1+

331

30
f 2
i ,

β2 =
248

15
f 2
i−1+

439

30
fi−1 fi+2−

2309

60
fi−1 fi+

407

90
f 2
i+1−

1193

60
fi fi+1

+
721

30
f 2
i +

103

10
fi−2 fi−

553

60
fi−2 fi−1+

61

45
f 2
i−2−

683

180
fi−2 fi+1.

In order to achieve a high-order reconstruction for regular functions, we define coef-
ficients dr(x) this way:

p(x)=
2

∑
r=0

dr(x)pr(x), (2.4)

where p(x) is the 6th-order Lagrange polynomial interpolating the whole stencil S (see
Fig. 3). After straightforward calculations, we have







d0(x)=
1

20∆x2
(x−xi−1)(x−xi−2),

d1(x)=− 1

20∆x2
((x−xi−2)(x−xi+3)+(x−xi+3)(x−xi−2)),

d2(x)=
1

20∆x2
(x−xi+2)(x−xi+3).
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Remark 2.2 (PWENO-4,3 interpolation). We give here the parameters to perform the
PWENO-4,3 interpolation, which is based exactly on the same ideas of PWENO-6,4 in-
terpolation, the difference being that instead of three stencils made of four points each,
we use two stencils made of three points each. The Lagrange polynomials are







p0(x)=
(x−xi+1)(x−xi+2)

2∆x2
fi−

(x−xi)(x−xi+2)

∆x2
fi+1+

(x−xi)(x−xi+1)

2∆x2
fi+2,

p1(x)=
(x−xi)(x−xi+1)

2∆x2
fi−1−

(x−xi−1)(x−xi+1)

∆x2
fi+

(x−xi−1)(x−xi)

2∆x2
fi+1,

the weights dr(x) are

d0(x)=
x−xi−1

3∆x
, d1(x)=− x−xi+2

3∆x
,

and the smoothness indicators are







β0 =
25

12
f 2
i +

16

3
f 2
i+1+

13

12
f 2
i+2+

13

12
fi fi+2−

13

3
fi+1 fi+2−

19

3
fi fi+1,

β1 =
16

3
f 2
i +

25

12
f 2
i+1+

13

12
f 2
i−1−

13

3
fi−1 fi+

13

6
fi−1 fi+1−

19

3
fi fi+1.

3 Numerical experiments

3.1 Steady-state results for the diodes

We consider two test examples: Si n+−n−n+ diodes of total length of 1µm and 0.25µm,
with 400nm and 50nm channels located in the middle of the device respectively. For the
400nm device and the 50nm device the dimensional doping is, respectively,

ND =

{
5×1017 cm−3 n+-zone
2×1015 cm−3 n-zone

and

{
5×1018 cm−3 n+-zone,
1×1015 cm−3 n-zone.

The results provided by the W5FD method [4] and our PW5TS are compared as for the
macroscopic magnitudes (density, electrostatic potential, electrostatic field, mean veloc-
ity, energy and current), as we can see in Figs. 4 to 10. In the W5FD scheme the kinetic
variable ω denotes the dimensionless electron energy and µ the cosine of the angle be-
tween the wave vector k and the x-axis.

The comparisons are set in such a way that we can infer how the choice of the differ-
ent parameters of our scheme affects the results compared to the W5FD results chosen as
benchmarks. Five issues have been considered: the order of the time splitting procedure,
the energy cut-off N̄, the type of interpolation chosen for computing the collision oper-
ator, the resolution in k and the time step ∆t. Detailed comparisons of these parameters
are shown for the 400 nm diode, whereas certain comparisons are drawn for the 50 nm
diode.
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Figure 4: Comparison between some macroscopic quantities of the 400 nm diode at equilibrium (5 ps) given by
splitting schemes of order 1 and 2. Top left: density in cm−3; top right: energy in eV; center left: potential
in V; center right: mean velocity in cm s−1; bottom left: electric field in 103V/cm; bottom right: current in
cm−2s−1. Grids are set 150×40×16 for (x,ω,µ) for the W5FD method, 150×71×71 for (x,k1,k23=‖(k2,k3)‖),
N̄ =11, ∆t=0.01ps, linear interpolation for collisions, for the PW5TS method.
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Figure 5: Comparison between some macroscopic quantities of the 400 nm diode at equilibrium (5 ps) given
by different integrations of the collisions, wither by linear interpolation or by PWENO-4,3 interpolation. Top
left: density in cm−3; top right: energy in eV; center left: potential in V; center right: mean velocity in
cm s−1; bottom left: electric field in 103V/cm; bottom right: current in cm−2s−1. Grids are set 150×40×16
for (x,ω,µ) for the W5FD method, 150×71×71 for (x,k1,k23 =‖(k2,k3)‖), N̄=11, ∆t=0.01ps, 2nd order TS,
for the PW5TS method.
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Figure 6: Comparison between some macroscopic quantities of the 400 nm diode at equilibrium (5 ps) given by

different time steppings. Top left: density in cm−3; top right: energy in eV; center left: potential in V; center
right: mean velocity in cm s−1; bottom left: electric field in 103V/cm; bottom right: current in cm−2s−1.
Grids are set 150×40×16 for (x,ω,µ) for the W5FD method, 150×71×71 for (x,k1,k23 =‖(k2,k3)‖), N̄ =11,
linear interpolation for collisions, 2nd order TS, for the PW5TS method.
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Figure 7: Comparison between some macroscopic quantities of the 400 nm diode at equilibrium (5 ps) given

by different N̄. Top left: density in cm−3; top right: energy in eV; center left: potential in V; center right:
mean velocity in cm s−1; bottom left: electric field in 103V/cm; bottom right: current in cm−2s−1. Grids are
set 150×40×16 for (x,ω,µ) for the W5FD method, 150×64×64 for (x,k1,k23 = ‖(k2,k3)‖) (when N̄ = 10),
∆t=0.01ps, linear interpolation for collisions, 2nd order TS, for the PW5TS method.
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Figure 8: Comparison between some macroscopic quantities of the 400 nm diode at equilibrium (5 ps) given
by different resolutions of the (k1,k23)-grid. Top left: density in cm−3; top right: energy in eV; center left:

potential in V; center right: mean velocity in cm s−1; bottom left: electric field in 103V/cm; bottom right:
current in cm−2s−1. Grids are set 150×40×16 for (x,ω,µ) for the W5FD method, N̄ =11, ∆t=0.01ps, linear
interpolation for collisions, 2nd order TS, for the PW5TS method.
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Figure 9: Comparison between some macroscopic quantities of the 50 nm diode at equilibrium (2 ps) given

by different N̄. Top left: density in cm−3; center left: potential in V; top right: energy in eV; center right:
mean velocity in cm s−1; bottom left: electric field in 103V/cm; bottom right: current in cm−2s−1. Grids are
set 150×144×16 for (x,ω,µ) for the W5FD method, 150×32×32 for (x,k1,k23 = ‖(k2,k3)‖) (when N̄ = 18),
∆t=0.01ps, linear interpolation for the collisions, 2nd order TS, for the PW5TS method.
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Figure 10: Comparison between some macroscopic quantities of the 50 nm diode at equilibrium (2 ps) given
by different resolutions of the (k1,k23)-grid. The grid is set 150×144×16 for (x,ω,µ) for the W5FD method.
N̄ =20, ∆t=0.01ps, linear interpolation for the collisions, 2nd order TS, for the PW5TS method.
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One advantage of the proposed method is that we have no restriction for the time
stepping, thus in both cases we can reach the equilibrium (5 ps for the 400 nm diode, 2 ps
for the 50 nm diode) by largely less time-steps than those in [4], where several thousands
were needed. We have empirically searched for the largest time steppings by which no
instabilities appear; for the 400 nm diode it seems to be around ∆t = 0.07 ps (so by just
about 70 steps we reach the equilibrium), for the 50 nm diode around ∆t = 0.04 ps. As
for the Finite Differences scheme, the adaptive time stepping situates between 10−3 and
10−4 ps.

The choice of shorter time steppings and better resolution in k due to finer grids or
larger cut-off energy N̄ improves the quality of the results, see Figs. 6 to 10; of course, the
counterpart is that it increases the computational cost. The loss of reliability is evident
when we increase the time stepping of the code if we look at the current and the mean
velocity in Fig. 6, where the oscillations are amplified, even if the density, the electric
potential and the electric field remain very close. Thus, unfortunately the improvement
in the time stepping does not always translate into a shorter computational time, a better
resolution in the k-dimension with larger grids and better adapted cut-off energy N̄ being
needed in order to obtain reliable results.

All the above results have been obtained by using the direct linear interpolation for
the collisional step and the time splitting procedure in Subsection 2.1. Let us comment on
this choice: we have tested and compared the direct linear interpolation and the PWENO-
4,3 interpolations as discussed in Subsection 2.1 together with the first-order splitting and
the TS splitting procedure in Subsection 2.1. In Figs. 4 and 5 results are compared in terms
of the current and the mean velocity at equilibrium. We first observe that first-order split-
ting results are in general worse than the results with time splitting procedure in Subsec-
tion 2.1 and Appendix A.2. On the other hand, we observe that improving the accuracy
of the interpolation procedure in the collision step from linear to PWENO-4,3 does not
result in a marked gain of accuracy for these quantities. Even if results are not shown
here, a simple two-dimensional linear, in each variable not jointly, interpolation in each
quadrangle of the cartesian grid has been performed. Again, this improvement in the in-
terpolation accuracy does not yield a significant gain in the accuracy of the macroscopic
quantities. This collisional step will need further improvements or alternative methods
as spectral approaches [8] before being able to cope with two dimensional devices in
comparison to the efficiency of W5FD [5].

On the other hand, having a finer grid in the k-dimension, moreover in cartesian co-
ordinates, permits a better resolution of the distribution function, as we can observe in
Figs. 11 and 12: like in [4], the pdf outside the channel is close to a Maxwellian distribu-
tion. Inside the channel it looks like a shifted Maxwellian in the large diode, while in the
small one it assumes a very asymmetric shape. Moreover, in this small diode we observe
the formation of a narrow ballistic pick. A good resolution of this narrow pick involves a
very fine grid in k-space and a much larger computational cost. Its underresolution is the
cause of the difference and oscillations in mean velocity and current between the W5FD
method [4] and our PW5TS observed in Fig. 10. Therefore, an energy-based variables
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Figure 11: Distribution function of the 400 nm diode at time 5 ps given by the PW5TS method at different
points of the device, for a 150×71×71 grid, N̄=11, ∆t=0.01ps, 2nd order TS, linear interpolation for collisions.
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Figure 12: Distribution function of the 50 nm diode at time 2 ps given by the PW5TS method at different points
of the device, for a 150×129×129 grid, N̄ =36, ∆t=0.01ps, 2nd order TS, linear interpolation for collisions.

solver as the one in [4] gives better results in this case.

Finally, let us point out that previous results have been obtained looking at the sta-
bilization in time of the macroscopic quantities. For instance, in the 400-nm diode case,
runs have been performed till 5ps for which the density is stabilized up to 10−6. A sta-
bilization of the other macroscopic quantities: current, mean velocity and energy needs
longer runs till 10ps approx. Typical problems in reaching numerical steady states occur
for splitting in time numerical strategies. In our case, the main issue is that the results
stabilize numerically to states in which the current is not constant as it should be for the
stationary case. We can observe this problem in the current comparison of Figs. 8 and
10. An improvement in the numerical approximation of the collisional step will certainly
help to fix this problem.

3.2 Steady-state results in multifrequency phonons

With the method we have implemented it is easy to change the solver of the collision
operator. Usually, phonons do not have a single frequency; in [4] this simplification was
set in order to directly compute the collision operator without needing to perform inter-
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polations. In this method, we just have to add as many interpolations as the frequencies
are. In [15] they took into account six frequencies, for a diode of total length 600 nm, with
a channel of 400 nm. The collision operator transforms into

S(k,k′)=
6

∑
i=1

Ki

[
(nqi

+1)δ(ε(k′)−ε(k)+ h̄ωi)+nqi
δ(ε(k′)−ε(k)− h̄ωi)

]

+K0δ(ε(k′)−ε(k)). (3.1)

In (3.1), nqi
are the occupation numbers of phonons

nqi
=

1

exp
(

h̄ωi
kBTL

)

−1
, (3.2)

and the kernels Ki are

Ki =
Z f Dtk

2
i

8π2h̄ρ0ωi
, (3.3)

where h̄ωi and Dtki are the energy and the deformation potentials of the corresponding
phonon type. The numerical results are shown in Figs. 13 and 14. The following doping
profile is chosen:

ND =

{
5×1017 cm−3 n+-zone
2×1015 cm−3 n-zone

and the quantities related to the phonon frequencies are set

freq. Z f h̄ω(meV) DtK(108eV/cm) freq. Z f h̄ω(meV) DtK(108eV/cm)

1 1 12 0.5 4 4 47.4 2

2 1 18.5 0.8 5 1 61.2 11

3 4 19 0.3 6 4 59 2

where Z f is the number of equivalent valleys.

In this case, the use of the numerical scheme in [4] becomes much more involved
leading to very fine grids in energy variables and interpolations like in our case. More-
over, we show in Fig. 13 the comparison of our results to the ones obtained with a simple
application of the MultiGroup-WENO solver which are quite satisfactory. In [12], this
technique was applied in case of a single phonon frequency; here, we consider multifre-
quency phonons. This requires only some simple modifications of the collision operator.
Since the MultiGroup scheme is based on the cell average with respect to the wave vec-
tor, the presence of many delta distributions in the collision operator does not pose new
difficulties. Also in this case our method allows for a good resolution of the pdf’s in the
k-space as shown in Fig. 14.
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Figure 13: Macroscopic magnitudes given by the PW5TS method and a reference result obtained through a
Multi-Group WENO scheme. For the PW5TS simulation The k-resolution is set N̄ = 27, the time stepping is
set ∆t=0.01ps, 2nd order TS, linear interpolation for collisions.
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Figure 14: Snapshots given by the PW5TS method at different points of the multifrequency device, at time 5
ps. The grid is set 120×64×64, N̄ =27, ∆t=0.01ps, 2nd order TS, linear interpolation for collisions.
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Appendix

A.1 Adimensionalization summary

The BP system reads






∂ f

∂t
+cx∇xε·∇x f −ckE·∇k f =Q[ f ],

f0(x,k)= cinit ND(x)M(k),

where the energy-band function becomes ε(k)= cε|k|2, and the Maxwellian

M(k)=

(
π

CM

)−3/2

e−CMk2
.

The electrostatic field is self-consistently computed through the Poisson’s equation

∆xΦ= cp [ρ(t,x)−ND(x)], E=−ce∇xΦ,

where the density is given by

ρ(t,x)= cd

∫

R3
f (t,x,k)dk.

The gain and loss parts of the collision operator are

Q+[ f ]=
∫

R3
f (t,x,k)

[

c0δ(ε(k)−ε(k′))+c+δ

(

ε(k)−ε(k′)+
h̄ω

ε∗

)

+c−δ

(

ε(k)−ε(k′)− h̄ω

ε∗

)]

dk′

and

Q−[ f ]= f (t,x,k)
∫

R3

[

c0δ(ε(k)−ε(k′))+c+δ

(

ε(k)−ε(k′)− h̄ω

ε∗

)

+c−δ

(

ε(k′)−ε(k)+
h̄ω

ε∗

)]

dk′ .

The current is the first momentum in the k1 direction,

j(x)= cj

∫

R3
k1 f (k)dk,

the mean velocity is u(x)= cu j(x)/ρ(x), and the energy is

W(x)= cW
1

ρ(x)

∫

R3
ε(k) f (k)dk.
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The dimensionless parameters are derived from physical constants, the problem data and
the adimensionalization parameters:

parameter 400 nm diode 50 nm diode parameter 400 nm diode 50 nm diode

cε =
h̄2k∗2

2m∗ε∗ 1 1 CM = h̄2k∗2

2m∗kBTL
1 1

cx = t∗ε∗
h̄k∗l∗ 0.0842885 0.337154 c0 = K0t∗k∗3

ε∗ 0.265376 0.265376

ck = qt∗E∗
h̄k∗ 0.326042 1.30417 c+ =

Kt∗(nq+1)k∗3

ε∗ 0.507132 0.507132

cd = k∗3

ρ∗ 1 1 c−=
Kt∗nqk∗3

ε∗ 0.0443372 0.0443372

cp =
qρ∗l∗2

ǫV∗ 156480 9780.02 cj =
h̄k∗4

m∗ j∗ 1.70562×107 1.06601×106

ce = V∗
l∗E∗ 10 10 cu = j∗

u∗ρ∗ 9.88362×10−9 6.32552×10−7

cinit =
1
cd

1 1 k∗3ε∗
ρ∗W∗ 4.14195×10−33 6.62712×10−32

The physical constants involved in the solution of the BP problem are:

name meaning value

h̄ Dirac’s constant 6.626068×10−34

2π

=1.05456×10−34 m2Kg
s

q elementary charge 1.60217646

m∗ effective electron mass 0.32×9.10938188×10−31Kg

=0.32×electron mass =2.915×10−31Kg

kB Boltzmann’s constant 1.3806503×10−23 m2Kg

s2K
ul sound velocity 9040 m

s

ρ0 Si crystal density 2330
Kg
m3

ǫ0 vacuum dielectric permittivity 8.85419×10−12 F
m

ǫr Si relative permittivity 11.7

ǫ Si dielectric permittivity 1.0359402×10−10 F
m

F Farad F= s4 A2

m2Kg
= C

V

Finally, the problem data are:







ω = frequency=
0.063eV

h̄

Dtk=optical coupling frequency=11.4×1010 eV

m

K0 =
kBTLEac

2

4π2hu2
l ρ0

=1.08638×10−35

Eac =deformation potential=9 eV

K =
Dtk

2

8π2ρ0ω
=1.89456×10−35

TL = lattice temperature=300K.
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A.2 Time splitting scheme

Combining all the time splittings, we get the following scheme: given the distribution
function f n = f (t= tn), we update f up to f n+1 by the following successive steps:

1. perform a ∆t/2 step for transport

∂ f n

∂t
+cx∇xε·∇x f n−cE ·∇k f n =0.

1.1 perform a ∆t/4 step for x-transport

∂ f n

∂t
+cx∇xε·∇x f n =0, f n+1/7 =[∆t/4; 0; 0],

where and below [a; b; c] means that the corresponding x-transport is a, k-
transport is b, and the collision is c.

1.2 perform a ∆t/2 step for k-transport

∂ f n+1/7

∂t
−cE ·∇k f n+1/7 =0, f n+2/7 =[∆t/4; ∆t/2; 0].

1.3 perform a ∆t/4 step for x-transport

∂ f n+2/7

∂t
+cx∇xε·∇x f n+2/7 =0, f n+3/7 =[∆t/2; ∆t/2; 0].

2. perform a ∆t step for collisions

∂ f n+3/7

∂t
=Q[ f n+3/7], f n+4/7 =[∆t/2; ∆t/2; ∆t].

3. perform a ∆t/2 step for transport

∂ f n+4/7

∂t
+cx∇xε·∇x f n+4/7−cE ·∇k f n+4/7 =0.

3.1 perform a ∆t/4 step for x-transport

∂ f n+4/7

∂t
+cx∇xε·∇x f n+4/7 =0, f n+5/7 =[3∆t/4; ∆t/2; ∆t].

3.2 perform a ∆t/2 step for k-transport

∂ f n+5/7

∂t
−cE ·∇k f n+5/7 =0, f n+6/7 =[3∆t/4; ∆t; ∆t].

3.3 perform a ∆t/4 step for x-transport

∂ f n+6/7

∂t
+cx∇xε·∇x f n+6/7 =0, f n+1 =[∆t; ∆t; ∆t].
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A.3 First-order time splitting scheme

The first-order time splitting scheme reads:

• Step 1. Solve
∂ f

∂t
+cx

∂ε

∂k1

∂ f

∂x
−ckEx

∂ f

∂k1
=0 for a ∆t-time step;

• Step 2. Solve
∂ f

∂t
=Q[ f ] for a ∆t-time step;

combined with a splitting of the same order for the solution of the transport part.
The scheme we obtain is:

1. perform a ∆t step for transport

∂ f n

∂t
+cx∇xε·∇x f n−cE ·∇k f n =0.

1.1 perform a ∆t step for x-transport

∂ f n

∂t
+cx∇xε·∇x f n =0, f n+1/3 =[∆t; 0; 0].

1.2 perform a ∆t step for k-transport

∂ f n+1/3

∂t
−cE ·∇k f n+1/3 =0, f n+2/3 =[∆t; ∆t; 0].

2. perform a ∆t step for collisions

∂ f n+2/3

∂t
=Q[ f n+2/3], f n+1 =[∆t; ∆t; ∆t].
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