- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 13 (2013), pp. 1309-1329.
Published online: 2013-05
Cited by
- BibTex
- RIS
- TXT
Spectral element methods on simplicial meshes, say TSEM, show both the advantages of spectral and finite element methods, i.e., spectral accuracy and geometrical flexibility. We present a TSEM solver of the two-dimensional (2D) incompressible Navier-Stokes equations, with possible extension to the 3D case. It uses a projection method in time and piecewise polynomial basis functions of arbitrary degree in space. The so-called Fekete-Gauss TSEM is employed, i.e., Fekete (resp. Gauss) points of the triangle are used as interpolation (resp. quadrature) points. For the sake of consistency, isoparametric elements are used to approximate curved geometries. The resolution algorithm is based on an efficient Schur complement method, so that one only solves for the element boundary nodes. Moreover, the algebraic system is never assembled, therefore the number of degrees of freedom is not limiting. An accuracy study is carried out and results are provided for classical benchmarks: the driven cavity flow, the flow between eccentric cylinders and the flow past a cylinder.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.180112.110612a}, url = {http://global-sci.org/intro/article_detail/cicp/7276.html} }Spectral element methods on simplicial meshes, say TSEM, show both the advantages of spectral and finite element methods, i.e., spectral accuracy and geometrical flexibility. We present a TSEM solver of the two-dimensional (2D) incompressible Navier-Stokes equations, with possible extension to the 3D case. It uses a projection method in time and piecewise polynomial basis functions of arbitrary degree in space. The so-called Fekete-Gauss TSEM is employed, i.e., Fekete (resp. Gauss) points of the triangle are used as interpolation (resp. quadrature) points. For the sake of consistency, isoparametric elements are used to approximate curved geometries. The resolution algorithm is based on an efficient Schur complement method, so that one only solves for the element boundary nodes. Moreover, the algebraic system is never assembled, therefore the number of degrees of freedom is not limiting. An accuracy study is carried out and results are provided for classical benchmarks: the driven cavity flow, the flow between eccentric cylinders and the flow past a cylinder.