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1 Lab. J.A. Dieudonné, UMR 7351 CNRS UNS, Université de Nice -
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Abstract. Spectral element methods on simplicial meshes, say TSEM, show both the
advantages of spectral and finite element methods, i.e., spectral accuracy and geomet-
rical flexibility. We present a TSEM solver of the two-dimensional (2D) incompressible
Navier-Stokes equations, with possible extension to the 3D case. It uses a projection
method in time and piecewise polynomial basis functions of arbitrary degree in space.
The so-called Fekete-Gauss TSEM is employed, i.e., Fekete (resp. Gauss) points of the
triangle are used as interpolation (resp. quadrature) points. For the sake of consistency,
isoparametric elements are used to approximate curved geometries. The resolution al-
gorithm is based on an efficient Schur complement method, so that one only solves
for the element boundary nodes. Moreover, the algebraic system is never assembled,
therefore the number of degrees of freedom is not limiting. An accuracy study is car-
ried out and results are provided for classical benchmarks: the driven cavity flow, the
flow between eccentric cylinders and the flow past a cylinder.

AMS subject classifications: 65M60, 65M70, 76D05
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1 Introduction

Using high order/spectral/spectral like methods may be of interest for many physical
problems, e.g., wave propagation over long distances or hydrodynamic instabilities, for
which standard first/second order approximations may completely fail to capture the
correct dynamics. As well known, spectral methods are however usually restricted to
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simple geometries, i.e., Cartesian, cylindrical, spherical, ···. Progresses in this field es-
sentially rely on using embedding methods but at the price of a loss of regularity of the
solution and so, at least formally, of the so-called spectral accuracy. Spectral element
methods (SEMs) are much better adapted to more involved geometries, see e.g. [8, 19].
However, since based on using quadrangular elements (2D case), they may also be not
adapted to really complex ones for which simplicial meshes are required. This is why
going to high order finite element methods (FEMs) or equivalently to SEMs on simplicial
meshes is of increasing interest nowadays.

Many works have been carried out in this field during the last two decades, especially
on the hp-FEM, see e.g. [19, 31] and references herein. Here we rather follow approaches
proposed in the late 90’s and in the 2000’s on the basis of “true SEMs” for simplicial
meshes, see e.g. [12, 15, 16, 28, 35, 40]. Such approaches are of nodal rather than modal
type, i.e., the basis functions are the Lagrange polynomials based on a set of carefully
selected interpolation points. The choice of the best set of points, based on minimiz-
ing the corresponding Lebesgue constant for the reference triangle/tetrahedron, remains
an open problem, which is however now more of academical interest. Various sets of
interpolation points have indeed been proposed, at least in 2D, all of them showing satis-
factory properties as soon as the polynomial interpolation degree on the spectral element
remains reasonable (say N≤12) [26]. Among them we adopt the so-called Fekete points
of the triangle, because of some nice properties, such as the Lagrange polynomials based
on the Fekete points are maximum at these points, i.e., the Lagrange polynomial ϕi based
on the Fekete point Fi is such that max ϕi(x)= ϕi(Fi)=1. Moreover, the Fekete points of
the cube coincide with the Gauss-Lobatto-Legendre (GLL) points [2] involved in the stan-
dard SEM. This allows the efficient interfacing of triangles and quadrilaterals together in
the same mesh, making e.g. possible the use of thin quadrilaterals to capture short length
scales in boundary layers. Note however that, to our knowledge, Fekete points are only
known for the triangle and remain to be determined for the tetrahedron.

As a new contribution to works that we have carried out recently on the so-called
Fekete-Gauss TSEM for elliptic partial differential equations (PDE), see e.g. [24], we focus
here on problems governed by the unsteady incompressible Navier-Stokes equations.
The Fekete-Gauss TSEM (T for triangle/tetrahedron) makes use of two sets of points,
(i) the Fekete points for the interpolations in T and the (ii) Gauss points of T for the
quadratures. Such sets of points depend of course on the polynomial approximation
degree. Adopting two sets of points allows to by-pass the a priori not solvable problem
of finding in a non-tensorial domain a single set of points with both nice quadrature and
interpolation properties, see [37] and references herein. In other words the Fekete points
of T are not Gauss points, contrary to the GLL points for the cube. Moreover, as detailed
in [24], the use of two sets of points provides a larger flexibility and may be handled
efficiently.

The paper is organized as follows: Section 2 describes the time scheme, based of an
implicit (resp. explicit) treatment of the diffusion (resp. advection) term and an up to
date projection method. Section 3 provides details on the TSEM approximation. Section
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4 presents the Schur complement method that is implemented and the way we use to
solve the resulting algebraic systems. We also present a bending procedure to handle
curved elements. Section 5 firstly provides some convergence results before addressing
some well known benchmarks: Driven cavity flow, flow between two eccentric cylinders
and wake of a cylinder, for which we introduce an original outflow boundary treatment.
We conclude in Section 6.

2 The time scheme

In dimensionless form the incompressible Navier-Stokes (NS) equations may be written
as follows:

∂tu+N (u)=−∇p+ν∆u+ f in Ω×(0,tF), (2.1a)

∇·u=0, (2.1b)

where ν is the inverse of the Reynolds number, f a given forcing term and where u and
p are the velocity and pressure fields, respectively. Here Ω denotes the computational
domain and tF the final time value. In Eq. (2.1) N (u) is the non-linear advection term, e.g.
in convective form N (u)=(u·∇)u. To solve the evolution problem governed by the NS
equations, we need a divergence free initial velocity field, u0, defined on Ω, and boundary
conditions, e.g., for simplicity homogeneous Dirichlet boundary conditions u|Γ =0, with
Γ for the boundary of Ω.

For the numerical approximation of the NS system we plan to use a projection method
and a second order accurate implicit (resp. explicit) treatment of the linear (resp. non-
linear) term. Three steps are involved: (i) Computation of a provisional velocity, (ii)
projection to obtain a divergence free field and (iii) update of the pressure. Such an ap-
proach is rather classical (projection methods were introduced in the late 60’s [5, 38]).
However we use some more recent ingredients in order to enhance the accuracy of the
splitting [14, 39]. In details:

Step 1: Let un(x) be the numerical approximation of the exact solution u(x,tn), where
tn = nτ (n is the time advancing index and τ is the time-step). First we compute the
provisional velocity u⋆(x) using a second order backward finite difference (BDF2) ap-
proximation of the time derivative, a second order extrapolation (EX2) scheme for the
convection term and an EX1 one for the pressure. Then, u⋆ solves:

1

τ

(

α0u⋆+
2

∑
j=1

αju
n+1−j

)

+
2

∑
j=1

β jN (un+1−j)=−∇pn+ν∆u⋆+ f n+1, (2.2a)

u⋆|Γ =0, (2.2b)

where αj, β j are the coefficients of the BDF2 and EX2 schemes, respectively (here α0 =
3/2,α1 =−2,α2=1/2 and β1=2, β2 =−1).
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Step 2: un+1(x) is computed from u⋆ by a L2 projection onto a space of divergence free
vectors. On the basis of the Helmholtz decomposition theorem, one introduces a scalar
potential ϕ and states that:

u⋆=∇ϕ+un+1 , ∇·un+1=0. (2.3)

Taking the divergence of u⋆ and its dot product on Γ with the unit outwards orthogonal
vector n, if we enforce the impermeability condition un+1 ·n|Γ = u⋆ ·n|Γ = 0, it turns out
that ϕ solves the Poisson problem:

∆ϕ=∇·u⋆, (2.4a)

∂n ϕ|Γ=0. (2.4b)

One easily checks that the divergence free vector field un+1 is indeed the L2 projection of
u⋆:

∫

Ω
(u⋆−un+1)·un+1dΩ=

∫

Ω
∇ϕ·un+1dΩ=

∫

Ω
∇·(ϕun+1)dΩ

=
∫

Γ
ϕun+1 ·ndΓ=0. (2.5)

Note that in case of non-homogeneous Dirichlet conditions, if u·n|Γ 6=0 the imperme-
ability condition may be recovered by using an irrotational divergence free lifting of u
and then a modified forcing term f .

Step 3: For the update of the pressure, let us report the expression (2.3) of u⋆ in the time-
discrete momentum equation (2.2), as well as its Laplacian:

∆u⋆=∆un+1+∆(∇ϕ)=∆un+1+∇(∆ϕ)=∆un+1+∇(∇·u⋆), (2.6)

then we get:

1

τ

( 2

∑
j=0

αju
n+1−j

)

+
2

∑
j=1

β jN (un+1−j)=−∇pn+1+ν∆un+1+ f n+1, (2.7a)

un+1|Γ =−∇ϕ|Γ , (2.7b)

where

pn+1= pn+
α0

τ
ϕ−ν∇·u⋆ . (2.8)

Note however that for the present derivation of the pressure update [39], in (2.6) we have
used the commutativity property of the gradient and Laplacian operators, which may
not hold for the discrete operators. Thanks to the so-called rotational form of the viscous
term this may be avoided: Since at the continuous level any gradient is in the kernel of
the rotational operator we state that in (2.2)

∆u⋆≡∇×(∇×u⋆)−∇(∇·u⋆)=∆un+1−∇(∇·u⋆). (2.9)
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The present approach is thus generally called projection method in rotational form of the
NS equations [14].

Let us conclude this Section with the following remarks:

• Higher order approximations in time are easily obtained by using higher order fi-
nite difference discretizations. Thus, a third order approximation may be obtained
by using BDF3 (rather than BDF2) for the time derivative, EX3 (rather than EX2) for
the advection term and EX2 (rather than EX1) for the pressure. Such approximation
orders are however formal.

• The present projection method is actually O(τ2) for the velocity components and
O(τ3/2) for the pressure [14], which up to our knowledge is the best accuracy result
obtained with a projection method. Convergence results are provided in Section 5.

• From the gradient of the pressure update (2.8), one can derive that on the boundary
Γ:

∂n pn+1=∂n pn−ν∂n(∇·u⋆), (2.10)

so that the additional correction term avoids using for all time-steps the same Neu-
mann condition value (generally zero) for the pressure. As discussed later in Sec-
tion 3, in the developed TSEM implementation taking into account such an addi-
tional term requires however to solve a mass matrix problem.

• The explicit treatment of the convective term may differ from a simple extrapola-
tion. For example, semi-Lagrangian approaches, like the operator integration factor
(OIF) [22], method that are a priori better adapted to high Reynolds number flows,
could be used here instead of the EX2 scheme.

Thanks to using a projection method, the NS problem splits into three uncoupled el-
liptic scalar PDEs in 2D (four PDEs in 3D), for the components of u⋆ and for the potential
ϕ. Hereafter we shortly describe how we derive the corresponding algebraic systems on
the basis of the Fekete-Gauss TSEM approximation.

3 TSEM approximation

As described in the previous Section, by adopting a projection method we must essen-
tially solve elliptic problems. This is why we consider now the 2D model problem:

−∇·(ν∇u)+σu= f in Ω, (3.1a)

u|Γ =0, (3.1b)

where ν > 0, σ ≥ 0 are bounded constants and f belongs to L2(Ω), the space of square
integrable measurable functions in Ω. For simplicity, homogeneous Dirichlet conditions
have been assumed.
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The weak formulation of problem (3.1) reads: Given f ∈ L2(Ω), find u∈ E = H1
0(Ω)

(standard notations are used for these spaces, see e.g. [29]) such that

a(u,v) :=
∫

Ω
(ν∇u·∇v+σuv)dΩ=

∫

Ω
f vdΩ, ∀v∈E. (3.2)

The variational formulation (3.2) is discretized by a conforming spectral element method
based on triangles. This is a Galerkin method which employs a discrete space consisting
of continuous piecewise polynomials of total degree N.

3.1 Fekete interpolation points

Let T = {(r,s) : −1< r,s ≤+1, r+s < 0} be the reference triangle and PN(T) the set of
polynomials on T of total degree ≤ N. We assume that Ω is decomposed into K non
overlapping triangular finite elements Ωk, Ω =

⋃K
k=1 Ωk, each of which is the image of

T by means of a suitable mapping, i.e., Ωk = gk(T). The mesh is conforming, so that
the intersection between two distinct Ωk is either the empty set or a common vertex or
a common side. For the approximation space, say EK,N , we use continuous, piecewise
polynomials of total degree ≤N,

E
K,N

={v∈C0(Ω̄) : v|Ωk
◦gk ∈PN(T), 1≤ k≤K}⊂E. (3.3)

Let {ψj}n
j=1, with n=(N+1)(N+2)/2, be an orthonormal basis of PN(T) for the usual

L2(T) inner product (for example, the Koornwinder-Dubiner polynomials may be used
to constitute such a basis [9]). Fekete points on T are defined as those points {x̂i}n

i=1
that maximize the determinant of the Vandermonde matrix V with entries Vij =ψj(x̂i),
1≤ i, j≤n. Among the main properties of Fekete points proved in [1, 2, 36], one has that
on the sides of the triangle the Fekete and GLL points coincide and that Fekete points are
GLL points for the cube, thus providing a strong link with the usual SEM.

Unlikely GLL points, a quadrature formula based on Fekete points is only exact for
integrands in PN(T). This remark suggests to separate the sets of approximation and
quadrature points, using the Fekete points {x̂i}n

i=1 for the first set and other points {ŷi}m
i=1

for the second set, defined by imposing an exact integration of polynomials in P2N(T) for
example [24]. Given the values at the approximation points of a polynomial uN ∈PN(T),
one can set up interpolation and differentiation matrices to compute the values of uN and
its derivatives, respectively, at the quadrature points. The interpolation matrix is simply
V ′V−1, where V ′ is a matrix of dimension (m,n) such that V ′

ij=ψj(ŷi). For a clever choice

of the interpolation points [26] the matrix V has a condition number that slowly increases
with N, therefore the computation of its inverse V−1 does not involve difficulties. To
compute derivatives, e.g., with respect to r, at the quadrature points we use again the
Koornwinder-Dubiner polynomials to obtain Dr =V ′rV−1, with (V ′r)ij = ∂rψj(ŷi). Once
the differentiation matrices Dr and Ds are known it is an easy task to compute derivatives
at the quadrature points starting from the values at the approximation points by applying
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the chain rule. This yields for the gradient, in the generic element Ωk, ∇xy= J−t
k ∇rs, where

Jk is the Jacobian matrix of the mapping gk (the superscript −t stands for transposition
times inversion).

3.2 Quadrature rule

The presented TSEM approach makes use of highly accurate integration rules based on
Gauss points [6, 7, 34]. If such integration rules are unknown, e.g. for large values of
N, at a higher computational cost it is possible to use integration rules based on Gauss
points for the quadrangle and then map them to T (e.g., [19, 33]). On a generic triangle
Ωk = gk(T), one may approximate the L2(Ωk) product of functions u and v by

(u,v)k,N =
m

∑
j=1

u(gk(ŷj))v(gk(ŷj))|Jk(ŷj)|ωj ≈ (u,v)Ωk
, (3.4)

where ωj >0, 1≤ j≤m, are the quadrature weights and |Jk| the Jacobian of the mapping
gk between T and Ωk. Knowing how to compute derivatives and integrals, we can use
the usual FEM methodology to set up the discrete problem

K

∑
k=1

ak,N(u,v)=
K

∑
k=1

( f ,v)k,N , ∀v∈EK,N , (3.5)

where ak,N(·,·) is obtained from a(·,·) by replacing each integral with the quadrature rule
(3.4). By using all the involved basis functions, Eq. (3.5) can be written in matrix form as
a linear system Au= b. Note that the TSEM matrix A is less sparse than the standard
SEM matrix and more ill-conditioned. As for some related choices of the basis functions,
its condition number is expected to grow as O(N4h−2), where h is a maximal diameter of
the triangular spectral elements (e.g., [17, 23, 27]).

3.3 TSEM discrete system

With σ= α0/τ, the approach presented here directly applies to the equations governing
the components of the provisional velocity u⋆. If the boundary conditions are of Dirich-
let type but not homogeneous, the procedure is the same as for the standard FEM (or
SEM). It consists of using a lifting, which is simple to implement with Lagrange polyno-
mials based on the boundary nodes, to recover the homogeneous Dirichlet condition. If
a Neumann condition is considered the space EK,N must be enlarged with the Lagrange
polynomials based on the corresponding boundary nodes. Moreover if this Neumann
condition is non-homogeneous, then the source term should be completed with the con-
tribution of the boundary integral which results from the integration by part.

For the potential ϕ we recover the Poisson equation with σ=0 and ν=1. Since Neu-
mann conditions are concerned, the space of basis functions EK,N additionally includes
the Lagrange polynomials based on the boundary nodes. Here a difficulty arises as the
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solution can only be computed up to an additive constant. In practice we simply set to 0
the value of ϕ at one of the boundary element nodes.

As it stands, the pressure update Eq. (2.8) has been shown to induce instabilities, be-
cause the ∇·u⋆ term is not C0 continuous and so not regular enough. Such numerical
instabilities are overcome if the equation is firstly projected onto the TSEM basis func-
tions, which means that the pressure must solve:

∫

Ω
pn+1vdΩ=

∫

Ω
(pn+

α0

τ
ϕ−ν∇·u⋆)vdΩ, ∀v∈EK,N , (3.6)

where again EK,N is enlarged with the Lagrange polynomials based on the boundary
nodes, since no boundary conditions are here required. We then obtain a mass matrix
problem, i.e. that requires the inversion of the mass matrix, of the form (3.2) with σ= 1
and ν=0, and the Lagrange basis functions for u and v.

3.4 Isoparametric elements

If the computational domain Ω is not polygonal, at the boundary Γ using isoparametric
elements is necessary to preserve the spectral accuracy of the approximation. Isopara-
metric elements are easy to implement as soon as the images of the interpolation points
by the mapping gk are known: The components of gk being themselves approximated
by polynomials of total degree N, one can indeed use the differentiation matrices Dr and
Ds to compute the elements of the Jacobian matrix Jk. Then, the problem reduces to de-
fine the images of the Fekete points in the generic element Ωk. Some procedures may be
found in the literature to set up a transformation from a reference element to a generic el-
ement [13]. Here we use an in-house bending procedure defined as follows: First, we use
a standard mesh generator to discretize Ω by triangles; This allows to define linear map-
pings and for each triangle a set of interpolation points. Then, considering successively
each triangle, say ABC, if one edge, say BC, should approximate a curved boundary, we
apply to each interpolation point, say Fi, 1≤ i≤n, the linear transformation such that the
image of the intersection point of AFi with BC is on the curved edge. Note that if Fi be-
longs to AB or AC, then it is not moved (the B and C vertices are on Γ) and of course that
Fi may belong to BC. In this bending procedure it is assumed that each deformed triangle
has at most one edge on the boundary Γ and that the opposite vertex is inside Ω. Its main
advantage is that the gk : T→Ωk isoparametric mapping is not explicitly formulated.

3.5 Advection term

To conclude this Section let us focus on the advection term. In convective form such a
term writes N (u)=(u·∇)u whereas in conservative form we have N (u)=∇·(u⊗u). In
both cases, it is required to differentiate quantities which are not continuous at the edges
of the elements. Indeed, in Eq. (2.3) the TSEM approximations of u⋆ and ϕ are only C0

continuous, so that ∇ϕ and consequently un+1 jump at the edges of the elements. Despite
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that, because a week formulation is involved good results may be obtained. However, we
prefer to use the rotational form of the convective term, so that the momentum equation
writes:

∂tu+ω×u=−∇P+ν∆u, (3.7a)

P= p+
u2

2
, (3.7b)

where P is the total pressure and ω the vorticity. Then, since ω
n+1=∇×un+1=∇×u⋆, we

have only to differentiate continuous quantities. Note that the pressure correction ϕ still
appears as the Lagrange multiplier that allows the velocity field to be divergence free, so
that nothing has to be changed in the projection algorithm previously described.

4 The solution algorithm

The main drawback of the usual FEM approach is that the matrix A may be very large
and ill conditioned. Following works that we have previously carried out [25,27], we are
going to use a Schur complement method in the particular case where each mesh element
is a subdomain. The proposed approach presents the following advantages:

• The condition number of the matrix A is O(N4h−2) whereas the condition number
of its Schur complement S is O(Nh−2) [23, 25].

• The dimension of the Schur complement matrix S is O(N) whereas the dimension
of matrix A is O(N2).

Thus, using the Schur complement method the algebraic system we have to solve is both
better conditioned and smaller, since we only compute the unknowns associated to nodes
that are located on the boundaries of the spectral elements. Such an approach is some-
times called static condensation [30]. The unknowns at the inner nodes are then com-
puted a posteriori and the resolution matrix is never assembled, as explained in what
follows.

Let us consider the matrix form of Eq. (3.5) and restrict it to each element Ωk. Using as
test functions v◦gk the Lagrange polynomials based on the Fekete points, the elemental
matrix system reads

Akuk =bk+rk , (4.1)

where uk is the vector of the unknowns at the interpolation nodes in Ωk whereas rk stands
for the contribution of an (unknown) Neumann condition at the edges shared by two
elements. Note however that such terms compensate when assembled, i.e.

∑
k

′
rk =0, (4.2)

where ∑
′ is used to denote the assembling procedure.
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By reordering (if necessary) first the boundary nodes and then the interior ones (this
is not required in our implementation), and since rk has no contribution to inner nodes,
the matrix system Akuk=bk+rk can be rewritten as

(

Ak,γγ Ak,γI

Ak,Iγ Ak,I I

)(

uk,γ

uk,I

)

=

(

bk,γ+rk,γ

bk,I

)

, (4.3)

where the subscript (k,γ) (resp. (k, I)) refers to the boundary (resp. inner) nodes of the
element Ωk. Here, we have used the fact that rk,I = 0. Assuming now that Ak,I I is not
singular, we can eliminate the variables uk,I and set up the following equation for uk,γ:

Skuk,γ =gk , (4.4a)

with

Sk=(Ak,γγ−Ak,γI A−1
k,I I Ak,Iγ), (4.4b)

gk=bk,γ+rk,γ−Ak,γI A−1
k,I I bk,I . (4.4c)

The elementary Schur complement matrix Sk is of smaller dimension than matrix Ak, i.e.,
3N rather than (N+1)(N+2)/2. Moreover, Sk is also symmetric as Ak.

By the assembling procedure and taking into account the compensatory equation (4.2)
one obtains:

Suγ=gγ , (4.5a)

with

S=∑
k

′
Sk , (4.5b)

gγ =∑
k

′
(bk,γ−Ak,γI A−1

k,I Ibk,I), (4.5c)

where γ refers to the union of all element boundaries, so that in the present formulation
of the Schur complement method, Γ⊂γ.

In practice we assemble the source term gγ but do not assemble the Schur complement
matrix S, for memory space reasons. Because the Schur complement system is solved by
using a PCG method, we indeed only need to realize matrix vector product, which is easy
from:

Suγ=∑
k

′
Skuk,γ . (4.6)

This is an alternative to the more usual approach based on the use of low storage algo-
rithms for sparse matrices. For the preconditioner, we simply use the diagonal term of
matrix S, which is also assembled to this end. Following our previous works [25, 27],
interesting improvements could be achieved with the implementation of more sophisti-
cated preconditioners.
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Boundary conditions must however be enforced and this may appear problematic if
matrix S is not assembled. Let us go into the details by first considering Neumann, then
homogeneous Dirichlet and finally non-homogeneous Dirichlet conditions.

• Neumann conditions: Since they are taken into account in the source terms bk and
since they only infer on bk,γ (just like the rk), they are in fact correctly taken into
account in the assembled term gγ.

• Homogeneous Dirichlet conditions: If the matrix S=∑
′
k Sk was assembled, then each

iγ-line and each iγ-column of S associated to a Dirichlet boundary point should
be set to 0 and the (iγ,iγ) diagonal element should be set to 1, so that if the iγ

component of gγ is set to 0, then the boundary condition is correctly prescribed.
One may notice that this strategy preserves the dimension of the algebraic system
(4.5), is easy to implement and also preserves the symmetry of matrix S, which is
important in view of using a CG method. The algorithm that we use exactly realizes
that without modifying the elemental matrices: Each time a matrix vector product
of the form Suγ = ∑

′
k Sku

k,γ is made, we first set to zero the iγ-component of uγ,
which is equivalent to cancel the iγ-column of S; Then, once the product is done,
we set to zero the iγ-component of Suγ, which is equivalent to cancel the iγ-line of
S except the diagonal term.

• Non-homogeneous Dirichlet conditions: We start by the splitting of uγ such as,
uγ =uh

γ+ud
γ, where uh

γ solves an homogeneous Dirichlet problem and ud
γ gathers

the Dirichlet data. This is in fact the usual FEM implementation of the solution
lifting. First, one subtracts to the source term the sum ∑

′
k Skud

k,γ (obvious notations
are used). Then the procedure used for the homogeneous Dirichlet case is applied
to compute Suh

γ=∑
′
k Skuh

k,γ. Finally it remains to set the Dirichlet data to get Suγ.

In our implementation all operators specific to each element, i.e. A−1
k,I I , Ak,Iγ, Ak,γI A−1

k,I I
and Sk, are computed and stored in a preliminary calculation. The storage requirement
is then O(KN2). Such storage capacity remains reasonable and guarantees of an efficient
resolution during the time loop. It must however be done for each (σ,ν) pair, i.e., for the
u⋆-components, for the potential ϕ and also for the pressure update.

5 Applications

On the basis of the algorithms presented in the previous sections, a Fortran code has
been developed. In this Section we present some examples of applications to well known
benchmark problems: (i) the driven cavity flow, (ii) the flow between two eccentric cylin-
ders and finally (iii) the flow past a cylinder. Computations have been done on a sequen-
tial Dell computer with processor Intel Xeon 5570 at frequency 2.93GHz. Before going to
these examples, it is however of interest to check the accuracy of the projection method
described in Section 2.
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5.1 Accuracy results

As, e.g., outlined in [14], the formal accuracy of projection methods generally fails. The
approach described in Section 2 should at least avoid the formation of a numerical bound-
ary layer if the computational domain is smooth, i.e. without corners. Another point gen-
erally emphasized is that in order to satisfy the inf-sup condition, and so to obtain a well
posed discrete problem, the polynomial approximation degree for the pressure must be
lower than for the velocity components. As a preliminary step, in the present study we
use same polynomial degrees for all variables. It is then interesting to check the accuracy
of the method and provide some convergence rates with respect to the time-step τ and to
the polynomial approximation degree N.

To this end we simply consider the unsteady Stokes problem, i.e., the non-linear con-
vective term is dropped. The goal is to recover the exact solution:

uex=(sin(cx)sin(cy+t),cos(cx)cos(cy+t)), (5.1)

pex =cos(cx)sin(cy+t), (5.2)

where the parameter c controls the spatial frequency (with c= 1 this solution is the one
used in [14]). The Stokes equations are completed by a compatible forcing term. The
computational domain Ω is the polygon of 18 equal sides contained in a circle of radius
1. Eq. (5.1) restricted to the boundary provides the Dirichlet condition. Computations
are performed over the time interval [0,tF], with tF = 1, on a mesh composed of K = 48
triangles.

First, in order to check if the spectral convergence is obtained, we have set the time-
step τ = 10−3 and c = 5, so that the spatial error dominates the temporal one. For the
polynomial degree we have either N=3 (number of degrees of freedom per scalar field,
do f = 244), or N = 6 (do f = 919) or N = 9 (do f = 2026). Results obtained at t = tF are
provided in Fig. 1 (left). In the semi-log setting, the linear decrease of the “max norm”
(l∞ norm at the interpolation points) of the error clearly points out the so-called spectral
accuracy for both the velocity components and the pressure. Note that to eliminate the
pressure arbitrary additional constant, the pressure error is defined as (max(p−pex)−
min(p−pex))/2.

Second, we have studied the convergence with respect to the time-step. For N = 3,
N=6 and N=9, results for the pressure and the x-component of the velocity are displayed
in Fig. 1 (right). The exact solution is (5.1)-(5.2) with c=1, so that the temporal error is now
dominant. Despite that, one observes that for N=3 the error quickly saturates, meaning
that the spatial error dominates for τ < 10−2. For N = 6 and N = 9, the error curves of
the velocity coincide, which means that the time error is indeed dominant. These error
curves clearly show the second order convergence rate that results from the BDF2-EX2
approximation. In agreement with the remarks of Section 2, things are more tricky for
the pressure. For N = 6 and N = 9 minima of the errors are obtained for τ ≈ 410−2 and
τ≈ 10−3, respectively, whereas for N = 3, such a minimum does not lie in the time-step
range. Beyond this N-dependent critical value of the time-step, the errors increase. The
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Figure 1: Quasi-circular domain. Left panel: Error curves for the velocity components and for the pressure vs
the polynomial degree. The error on p dominates and the curves for ux and uy nearly coincide. Right panel:

Error curves for ux and p vs the time-step τ for N = {3,6,9}. For N = 3, when decreasing the time-step the
error on ux quickly saturates and the error on p increases. For N=6 and N=9, the error curves for p show a
minimum which shifts to the smaller time-steps when increasing N.

curves obtained for N=3 and N=6 seem however to show that the pressure field is not
“blowing up”. This is typical of the spurious modes of pressure that affect the standard
PN−PN spectral approximations. As previously discussed, in the limit N =∞ it seems
that one recovers the exact pressure, so that one should rather invoke pseudo-spurious
pressure modes. The present study is not contradictory with [14], where the authors
guess a pressure blow up in grid size limit. Thus, differently to the h-refinement one may
conjecture that the N-refinement allows to recover the exact pressure.

Tests have also been carried out in the square domain Ω= (−1,1)2, using again the
analytical solution (5.1)-(5.2) with c=5. The mesh is composed of K=42 elements, with
polynomial approximation degree N = 3 (do f = 220), N = 6 (do f = 817) or N = 9 (do f =
1792). From the results of [14], one expects to observe accuracy failures in the corners
despite the fact the solution is smooth. For the three different time-steps τ = 10−3, τ =
4 10−4 and τ = 10−4, Fig. 2 (left) shows the decay of the max norm of the error for the
x-component of the velocity and for the pressure. For the smallest value of the time step
the results are not polluted by the time error, and one clearly discerns an exponential
rate of convergence. For N = 3 and N = 6, just like for the quasi-circular domain one
observes that the error is increasing when decreasing the time-step, so that one may again
think that pseudo-spurious modes of pressure are present with the considered mesh. It
may be observed that the error essentially results from one of the four corners of the
computational domain. This is pointed out in Fig. 2 (right) which shows the field p−pex,
obtained at t= tF for N = 3 and τ = 10−4, together with the mesh and the “micromesh”
associated to each element. It turns out that the error is governed by the only corner that
is not shared by two spectral elements. The spectral accuracy is however preserved.

We conclude this Section by providing an insight on the computational efficiency of
our Fortran TSEM code. The computation time is of course essentially associated to the it-
erative solutions of the algebraic systems obtained for the velocity components, the pres-
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Figure 2: Square domain. Left panel: Error curves for ux and p vs the polynomial degree N for the three

different time-steps τ= {10−3,410−4,10−4}. For p (the three upper curves), if N≤ 6 the smaller is the time-

step the greater is the error. Right panel: Pressure error visualization for N=3 and τ=10−4; A peak occurs in
the upper-left corner.

sure correction and the pressure update. The iterative process stops when the relative
error on the residual equals 10−9. Keeping fixed the mesh and the number of time-steps
(10000, with τ= 10−4 and tF = 1), Table 1 provides the computational time associated to
the time advancing part of the unsteady Stokes problem, for different values of the poly-
nomial approximation degree N. The results have been obtained for the quasi-circular
domain. It is interesting to observe that the variations of the computational time per time
step and degree of freedom (do f ) are weak and also that a minimum is obtained for N=6.

Table 1: Computational time (Time, s) and computational time per time-step and degree of freedom (Time1,
µs) for the unsteady Stokes problem.

N do f Time (s) Time1 ( µs)
3 244 12.66 5.19
6 919 45.87 4.99
9 2026 114.4 5.65

5.2 Lid-driven cavity flow

The flow within the square cavity Ω=(0,1)2 is driven from above by a lid moving with a
given velocity. In order to provide accuracy comparisons with reference results, we first
consider the regularized driven cavity problem, see e.g. [10], with boundary conditions
u = (−16x2(1−x)2,0), at y = 1, and no-slip condition (u = 0) elsewhere. For the initial
condition, the fluid is assumed to be at rest (u0=0).

Computations have been carried out for two values of the Reynolds number, Re=100
and Re= 400, till obtaining a steady flow. Fig. 3 (top) shows the vorticity field obtained
with N=9 for Re=400 at the final time of the computation together with the mesh which
is composed of K=159 elements.
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Figure 3: Vorticity (at left) with the mesh (at right) for the regularized driven cavity flow at Re=400 (top) and
in the non-regularized case for Re= 1000 (bottom); Computations done with (K= 159, N= 9) and (K= 682,
N=9), respectively.

Table 2 gives some significant results, i.e. extrema of the vorticity, obtained with differ-
ent values of the polynomial approximation degree N. Comparisons are also provided
with the spectral Chebyshev calculations [3, 10, 18]. A good convergence to the spec-
tral results may be observed, especially knowing that in our case the extrema are those

Table 2: Lid-driven cavity flow: Extrema of the vorticity at Re=100 and Re=400.

Re = 100 Re = 400

Ref. N do f max|ω| xmax max|ω| xmax

3 763 13.25673 0.6250000 23.77490 0.6250000
6 2956 13.44357 0.6143893 25.06365 0.6356107

9 6580 13.44452 0.6199709 24.91301 0.6300291

[3] 32 1089 13.4448 0.620 24.9111 0.630
[18] 32 1089 13.4447 0.620 24.9107 0.630

[10] 32 1089 13.4447 0.620 24.9110 0.630
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obtained at the Fekete points, i.e., no polynomial interpolation is used to better local-
ize these extrema, contrarily to what is done for the Chebyshev results. In Table 1 we
have also mentioned the do f number per unknown variable. As expected the Cheby-
shev method appears here more efficient, because of the natural accumulation of the
Chebyshev-Gauss-Lobatto grid points at the boundaries. Moreover, for the TSEM com-
putation a quasi-uniform mesh is used, see Fig. 1 (top).

We now consider the non-regularized problem, i.e. with boundary condition u =
(−1,0) at y=1. Such a driven cavity flow is much more challenging to be captured with
a high-order method, since involving singularities in the upper corners of Ω, where ux is
not continuous. This means that the vorticity, ω=∂xuy−∂yux, blows up at that points.

The calculation has been done for Re = 1000 and with N = 9. The mesh makes use
of K= 682 elements, so that do f = 28090, and is adapted to the singularities, i.e., smaller
elements are used at the upper corners. At these points we simply enforce the no-slip
condition, i.e. no sophisticated singularity treatment, like the one proposed in [4], is
implemented. The vorticity field together with the mesh is shown in Fig. 3 (bottom).
As it may be observed, despite the singular behavior of the solution the result is quite
satisfactory, see e.g. [4] where the same isolines are shown. In this calculation, the value
of the vorticity at the upper left corner is ω≈1000.

5.3 Flow between eccentric cylinders

The computational domain Ω is now defined by two eccentric cylinders of radius R1

and R2 (R1 <R2), with eccentricity e defined as the distance between the two cylinders’
centers. The case of a rotating inner cylinder is considered. As usual for this kind of flow,
the clearance c=R2−R1 is chosen as the characteristic length. For the sake of comparison,
the geometry and flow parameters are identical to those given in [11, 32]: R1 =1, R2 =2,
e=0.5 and Re=37.2, the Reynolds number being based on the inner cylinder tangential
velocity. The main features of this flow are known to be controlled by the Taylor number
defined as Tn =Re

√
c/R1. When the inner cylinder is the one rotating, the flow remains

two dimensional and laminar up to Tn = 41.6. Note that for the case considered c= R1

and consequently Tn=Re. Essentially we plan here to demonstrate the necessity of using
isoparametric elements.

Computations have been carried out, starting from the fluid at rest and with Dirichlet
boundary conditions, with N=9 and K=222 standard triangles or isoparametric elements
(do f =9315). In the former case the cylinders are approximated by polygons whereas, in
the latter case, polynomial approximations of degree N=9 are used to better approximate
the geometry. Fig. 4 (top left) and Fig. 4 (top right) show the vorticity, as computed with
triangles and with isoparametric elements, respectively. It is remarkable that if triangular
elements are used, then maxima of vorticity appear at the vertices of the triangle. This is
of course a numerical effect that can be avoided by using isoparametric elements. Fig. 4
(bottom left) shows the pressure and velocity field. The uy velocity component is shown
in Fig. 4 (bottom right) to point out the expected recirculation zone.
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Figure 4: Eccentric cylinders: Top: Vorticity with straight triangles (left) and vorticity with isoparametric
elements (right). Bottom: Pressure and velocity field (left) and y-component of velocity (right). Computations
done with (N=9, K=222).

5.4 Flow past a cylinder

Flow past a cylinder represents a good test to verify the capabilities of an unsteady NS
code. For Re ≥ 48, vortex shedding occurs at the cylinder and a von Karman street of
vortices appears in the wake of the cylinder. For Reynolds numbers up to approximately
190, the flow is two-dimensional. Above this threshold, three-dimensional instabilities
occur. Here we consider the 2D wake of a cylinder at Reynolds number ranging from
Re= 100 to Re= 200 (the upstream flow velocity and the cylinder diameter are used as
reference velocity and length, respectively). The computational domain Ω is the box
(−5,23)×(−6,6), from which a circle of unit diameter and centered at the origin is ex-
tracted. Free slip boundary conditions are used at the upper and lower parts of the
boundary, i.e. ∂yux =0 and uy =0 at y=±6, and no-slip boundary conditions are used at
the cylinder. At the inlet, say at x= xin, the velocity is constant and equal to uin =(1,0).
Such a flow is known to be laminar but unsteady, with a vortex shedding phenomenon
characterized by the Strouhal number, St, which is the dimensionless shedding frequency
(the ratio of the reference length and inflow velocity is used as reference time).

Here the main problem is that we have an open flow, so that soft outflow boundary
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conditions (OBC) should be implemented at the outlet, say at x= xout. It has turned out
that computations done with natural boundary conditions for the velocity components,
i.e. ∂xu = 0, yield unstable calculations. This may result from the fact that enforcing
∂xux=0 at x=xout implies uy=0 through the continuity equation, ∂xux+∂yuy=0, and the
boundary conditions at y=±6, uy=0. Moreover, using a stress free boundary condition
is not trivial in the frame of projection methods, because involving a coupling between
the pressure and the velocity components that precisely we want to avoid.

To overcome this difficulty we prefer using an “outlet zone” within which the flow
is softly enforced to become parallel and constant, just as it is at the inlet. Then one can
use at x = xout the same Dirichlet condition used at x = xin, with full consistency with
the continuity equation. This is done by introducing in the Navier-Stokes equations an
appropriate forcing term. Here, we have used:

∂tu+ω×u=−∇P+ν∆u+ f , (5.3a)

f =Csin

(

x−x0

xout−x0

π

2

)

(uin−u), if x> x0, (5.3b)

f =0, if x≤ x0, (5.3c)

where (x0,xout) defines the outlet zone and with C a control parameter.
Computations have been done with polynomial degree N=6 and K=2358 elements.

We have then do f =42882. The CFL number, based on a minimum value of the grid-size,
is set to 0.5, so that the time-step τ≈2.610−3. The computational time per time-step and
degree of freedom is about 36.5µs. For the outflow treatment we have taken x0 =18 and
C=2. Fig. 5 shows the vorticity field obtained for Re=200, together with the mesh, once

Figure 5: Vorticity (top) and mesh (bottom); Computation done with (N=6, K=2358).
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the unsteady flow is well established. The Strouhal number for Re=100 and Re=200 is
equal to St=0.1775 and St=0.2075, respectively. Such values being a little higher than ex-
pected for the wake of a cylinder in an open domain, we have also enforced in the outlet
zone a velocity profile showing a velocity deficit equal to 0.1 at y=0 and whose integral
preserves the flow rate. But for Re= 100 and N = 6 the Strouhal number is St= 0.1771,
so that one may think that the outflow treatment has a negligible influence on the di-
mensionless frequency. One may rather suspect a confinement effect, the blocking factor
being greater than 8 %. Thus, for Re= 100 and N = 6, computations done with a block-
ing factor 5 % has yielded St = 0.1762. Such a Strouhal number remains a little higher
than expected, with respect to the experimental result and the numerical ones compiled
in [21]. Note however that the SEM computation [20, 21] has even yielded slightly larger
values than ours, whereas less sophisticated methods, e.g., based on penalization tech-
niques to model the cylinder, seem presently to yield results in better agreement with the
experiment [42].

6 Conclusion

Algorithms developed to set up a high order FEM for the incompressible Navier-Stokes
equations have been carefully described. With respect to the standard P1-FEM, the TSEM
offers the possibility of much higher accuracy for the same number of degree of free-
dom whereas with respect to the SEM, it is much easier to handle complex geome-
tries. The main goal being efficiency, one uses an implicit/explicit treatment of the dif-
fusion/advection terms and a projection method, in order to avoid the pressure-velocity
coupling. Then, the NS system splits into scalar PDE which are solved on the basis of
the Fekete-Gauss TSEM approximation. Beyond the fact that simplicial meshes are sup-
ported, one important advantage of the TSEM approximation is its great flexibility, since
the polynomial degrees for the interpolation and the quadrature are not linked as it is the
case with the SEM. The TSEM differentiation matrices are however of larger size, but this
is not really a drawback for reasonable polynomial approximation degrees. Isoparamet-
ric elements are employed to preserve the spectral accuracy when curved boundaries are
involved. A Schur complement method is used to solve the resulting algebraic systems,
which may be very large since the associated matrices are never assembled. Examples
of applications have been presented. All elements of the proposed methodology were
described for 2D problems but extend naturally to 3D ones. Nowadays one should how-
ever use interpolation points different from the Fekete ones, e.g. the warp and blend
points [41], since up to our knowledge Fekete points remain to be determined for the
tetrahedron. Progresses are also expected for efficient quadrature rules in the tetrahe-
dron.
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