- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Initial and Nonlinear Oblique Boundary Value Problems for Fully Nonlinear Parabolic Equations
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-1-12,
author = {Dong Guangchang},
title = {Initial and Nonlinear Oblique Boundary Value Problems for Fully Nonlinear Parabolic Equations},
journal = {Journal of Partial Differential Equations},
year = {1988},
volume = {1},
number = {2},
pages = {12--42},
abstract = { We consider the initial and nonlinear oblique derivative bouodary value problem for fully nonlinear uniformly parabolic partial differential equations of second order. The parabolic operators satisfy natural structure conditions which have been introduced by Krylov. The nonlinear boundary operalors satisfy certain natural structure conditions also. The existence and uniqueness of classical solution are proved when the initial boundary values and the coefficients of the equation are suitable smooth.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5858.html}
}
TY - JOUR
T1 - Initial and Nonlinear Oblique Boundary Value Problems for Fully Nonlinear Parabolic Equations
AU - Dong Guangchang
JO - Journal of Partial Differential Equations
VL - 2
SP - 12
EP - 42
PY - 1988
DA - 1988/01
SN - 1
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5858.html
KW -
AB - We consider the initial and nonlinear oblique derivative bouodary value problem for fully nonlinear uniformly parabolic partial differential equations of second order. The parabolic operators satisfy natural structure conditions which have been introduced by Krylov. The nonlinear boundary operalors satisfy certain natural structure conditions also. The existence and uniqueness of classical solution are proved when the initial boundary values and the coefficients of the equation are suitable smooth.
Dong Guangchang. (1988). Initial and Nonlinear Oblique Boundary Value Problems for Fully Nonlinear Parabolic Equations.
Journal of Partial Differential Equations. 1 (2).
12-42.
doi:
Copy to clipboard