arrow
Volume 3, Issue 2
Local Solvability for a Class of Nonhomogeneous Left Invariant Differential Operators on HR \bigotimes Rk

Fu Chuli

J. Part. Diff. Eq., 3 (1990), pp. 16-26.

Published online: 1990-03

Export citation
  • Abstract
In this paper we discuss tbe local solvability of the following nonhomogeneous left invariant differential operators on the nilpotent Lie group H_n⊗R^K: P(X, Y, T, Z) = Σ_{|α+β|+ζ+|y|≤m|α+β|+2l=a}a_{αβly}X^αY^βT^lZ^y where X_j, Y_j (j = 1, 2, …, n), T, Z_j(j = l, 2, …, K) are bases of left invariant vector fields on H_n⊗R^K and a_{αβly} are complex constants.
  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JPDE-3-16, author = {Fu Chuli}, title = {Local Solvability for a Class of Nonhomogeneous Left Invariant Differential Operators on HR \bigotimes Rk}, journal = {Journal of Partial Differential Equations}, year = {1990}, volume = {3}, number = {2}, pages = {16--26}, abstract = { In this paper we discuss tbe local solvability of the following nonhomogeneous left invariant differential operators on the nilpotent Lie group H_n⊗R^K: P(X, Y, T, Z) = Σ_{|α+β|+ζ+|y|≤m|α+β|+2l=a}a_{αβly}X^αY^βT^lZ^y where X_j, Y_j (j = 1, 2, …, n), T, Z_j(j = l, 2, …, K) are bases of left invariant vector fields on H_n⊗R^K and a_{αβly} are complex constants.}, issn = {2079-732X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jpde/5795.html} }
TY - JOUR T1 - Local Solvability for a Class of Nonhomogeneous Left Invariant Differential Operators on HR \bigotimes Rk AU - Fu Chuli JO - Journal of Partial Differential Equations VL - 2 SP - 16 EP - 26 PY - 1990 DA - 1990/03 SN - 3 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jpde/5795.html KW - Local solvability KW - nilpotent Lie group KW - nonhomogeneous left invariant differential operator AB - In this paper we discuss tbe local solvability of the following nonhomogeneous left invariant differential operators on the nilpotent Lie group H_n⊗R^K: P(X, Y, T, Z) = Σ_{|α+β|+ζ+|y|≤m|α+β|+2l=a}a_{αβly}X^αY^βT^lZ^y where X_j, Y_j (j = 1, 2, …, n), T, Z_j(j = l, 2, …, K) are bases of left invariant vector fields on H_n⊗R^K and a_{αβly} are complex constants.
Fu Chuli. (1990). Local Solvability for a Class of Nonhomogeneous Left Invariant Differential Operators on HR \bigotimes Rk. Journal of Partial Differential Equations. 3 (2). 16-26. doi:
Copy to clipboard
The citation has been copied to your clipboard