- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Periodic Solutions of Nonlinear Wave Equations with Dissipative Boundary Conditions
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-3-1,
author = {Qin Tiehu},
title = {Periodic Solutions of Nonlinear Wave Equations with Dissipative Boundary Conditions},
journal = {Journal of Partial Differential Equations},
year = {1990},
volume = {3},
number = {1},
pages = {1--12},
abstract = { Applying Nash-Moser's implicit function theorem, the author proves the existence of periodic solution to nonlinear wave equation u_{tt} - u_{xx} + εg(t, x, u, u_t, u_x, u_{tt}, u_{tx}, u_{xx}) = 0 with a dissipative boundary condition, provided ε is sufficiently small.},
issn = {2079-732X},
doi = {https://doi.org/10.4208/aamm.10-m1030},
url = {http://global-sci.org/intro/article_detail/jpde/5786.html}
}
TY - JOUR
T1 - Periodic Solutions of Nonlinear Wave Equations with Dissipative Boundary Conditions
AU - Qin Tiehu
JO - Journal of Partial Differential Equations
VL - 1
SP - 1
EP - 12
PY - 1990
DA - 1990/03
SN - 3
DO - http://doi.org/10.4208/aamm.10-m1030
UR - https://global-sci.org/intro/article_detail/jpde/5786.html
KW - Nonlinear wave equation
KW - time periodic solution
KW - dissipative boundary condition
AB - Applying Nash-Moser's implicit function theorem, the author proves the existence of periodic solution to nonlinear wave equation u_{tt} - u_{xx} + εg(t, x, u, u_t, u_x, u_{tt}, u_{tx}, u_{xx}) = 0 with a dissipative boundary condition, provided ε is sufficiently small.
Qin Tiehu. (1990). Periodic Solutions of Nonlinear Wave Equations with Dissipative Boundary Conditions.
Journal of Partial Differential Equations. 3 (1).
1-12.
doi:10.4208/aamm.10-m1030
Copy to clipboard