- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988

On Nonlinear Eigen-problems of Quasi-linear Elliptic Operators

Cited by

Export citation

- BibTex
- RIS
- TXT

@Article{JPDE-4-56,
author = {Ma Li},
title = {On Nonlinear Eigen-problems of Quasi-linear Elliptic Operators},
journal = {Journal of Partial Differential Equations},
year = {1991},
volume = {4},
number = {3},
pages = {56--72},
abstract = { In this paper, we study the following Eigen-problem {-\frac{∂}{∂x_i}(a_{ij}(x, u)\frac{∂u}{∂x_j}) + \frac{1}{2}a_{iju}(x,u)\frac{∂u}{∂x_i}\frac{∂u}{∂x_j} + h(x)u = μμ\frac{n+2}{n-2} \quad in Ω \qquad (0.1) u = 0 \quad on ∂Ω u > 0 \quad in Ω ⊂ R^n under some assumptions. First. we minimize I(u) = \frac{1}{2}∫_Ωa_{ij}(x, u)\frac{∂u}{∂x_i}\frac{∂u}{∂x_j} + h(x)u² over E_α = {u ∈ H¹_0(Ω); ∫_Ωu^α = 1} ( 2 < α < N = \frac{2n}{n-2}) to give a H¹_0-solution U_α of the perturbation problems of (0.1). Since I is not differentiable in H¹_0(Ω), the key point is the estimate of U_α. Then, we derive local uniform bounds of (U_α) and give a 'bad' solution of (0.1). Last, we remove the singular points of the 'bad' solution to obtain a solution of (0.1), our result is a extension of that of Brezis & Nirenberg.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5775.html}
}

TY - JOUR
T1 - On Nonlinear Eigen-problems of Quasi-linear Elliptic Operators
AU - Ma Li
JO - Journal of Partial Differential Equations
VL - 3
SP - 56
EP - 72
PY - 1991
DA - 1991/04
SN - 4
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5775.html
KW - Non-differentiable
KW - critical
KW - regularity
AB - In this paper, we study the following Eigen-problem {-\frac{∂}{∂x_i}(a_{ij}(x, u)\frac{∂u}{∂x_j}) + \frac{1}{2}a_{iju}(x,u)\frac{∂u}{∂x_i}\frac{∂u}{∂x_j} + h(x)u = μμ\frac{n+2}{n-2} \quad in Ω \qquad (0.1) u = 0 \quad on ∂Ω u > 0 \quad in Ω ⊂ R^n under some assumptions. First. we minimize I(u) = \frac{1}{2}∫_Ωa_{ij}(x, u)\frac{∂u}{∂x_i}\frac{∂u}{∂x_j} + h(x)u² over E_α = {u ∈ H¹_0(Ω); ∫_Ωu^α = 1} ( 2 < α < N = \frac{2n}{n-2}) to give a H¹_0-solution U_α of the perturbation problems of (0.1). Since I is not differentiable in H¹_0(Ω), the key point is the estimate of U_α. Then, we derive local uniform bounds of (U_α) and give a 'bad' solution of (0.1). Last, we remove the singular points of the 'bad' solution to obtain a solution of (0.1), our result is a extension of that of Brezis & Nirenberg.

Ma Li. (1970). On Nonlinear Eigen-problems of Quasi-linear Elliptic Operators.

Copy to clipboard
*Journal of Partial Differential Equations*.*4*(3). 56-72. doi: