- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Existence of Solutions for Quasilinear Weakly Coercive Elliptic Variational Inequalities
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-8-205,
author = {},
title = {Existence of Solutions for Quasilinear Weakly Coercive Elliptic Variational Inequalities},
journal = {Journal of Partial Differential Equations},
year = {1995},
volume = {8},
number = {3},
pages = {205--210},
abstract = { In this note we give an existence result to a class of variational inequalities associated with quasilinear elliptic operators of second order with lower order terms. We prove “a priori” estimate by an extension of the truncation method to the nonlinear case.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5652.html}
}
TY - JOUR
T1 - Existence of Solutions for Quasilinear Weakly Coercive Elliptic Variational Inequalities
JO - Journal of Partial Differential Equations
VL - 3
SP - 205
EP - 210
PY - 1995
DA - 1995/08
SN - 8
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5652.html
KW - Weakly coercive
KW - variational inequality
KW - truncation method
KW - existence
KW - closed convex set
AB - In this note we give an existence result to a class of variational inequalities associated with quasilinear elliptic operators of second order with lower order terms. We prove “a priori” estimate by an extension of the truncation method to the nonlinear case.
Jin Liang & Francisco Rodrigues Jose . (2019). Existence of Solutions for Quasilinear Weakly Coercive Elliptic Variational Inequalities.
Journal of Partial Differential Equations. 8 (3).
205-210.
doi:
Copy to clipboard