- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Global W2,p Solutions of GBBM Equations on Unbounded Domain
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-14-349,
author = {Haiping Mo and Yacheng Liu },
title = {Global W2,p Solutions of GBBM Equations on Unbounded Domain},
journal = {Journal of Partial Differential Equations},
year = {2001},
volume = {14},
number = {4},
pages = {349--355},
abstract = { In this paper we study the initial boundary value problem of GBBM equations on unbounded domain u_t - Δu_t = div f(u) u(x,0) = u_0(x) u|_{∂Ω} = 0 and corresponding Cauchy problem. Under the conditions: f( s) ∈ C^sup1 and satisfies (H)\qquad |f'(s)| ≤ C|s|^ϒ, 0 ≤ ϒ ≤ \frac{2}{n-2} if n ≥ 3; 0 ≤ ϒ < ∞ if n = 2 u_0(x) ∈ W^{2,p}(Ω) ∩ W^{2,2}(Ω) ∩ W^{1,p}_0(Ω)(W^{2,p}(R^n) ∩ W^{2,2}(R^n) for Cauchy problem), 2 ≤ p < ∞, we obtain the existence and uniqueness of global solution u(x, t) ∈ W^{1,∞}(0, T; W^{2,p}(Ω) ∩ W^{2,2}(Ω) ∩ W^{1,p}_0(Ω))(W^{1,∞}(0, T; W^{2,p}(R^n) ∩ W^{2,2} (R^n)) for Cauchy problem), so the results of [1] and [2] are generalized and improved in essential.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5488.html}
}
TY - JOUR
T1 - Global W2,p Solutions of GBBM Equations on Unbounded Domain
AU - Haiping Mo & Yacheng Liu
JO - Journal of Partial Differential Equations
VL - 4
SP - 349
EP - 355
PY - 2001
DA - 2001/11
SN - 14
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5488.html
KW - GBBM equation
KW - unbounded domain
KW - global W^{2
KW - p} solutions
KW - existence
AB - In this paper we study the initial boundary value problem of GBBM equations on unbounded domain u_t - Δu_t = div f(u) u(x,0) = u_0(x) u|_{∂Ω} = 0 and corresponding Cauchy problem. Under the conditions: f( s) ∈ C^sup1 and satisfies (H)\qquad |f'(s)| ≤ C|s|^ϒ, 0 ≤ ϒ ≤ \frac{2}{n-2} if n ≥ 3; 0 ≤ ϒ < ∞ if n = 2 u_0(x) ∈ W^{2,p}(Ω) ∩ W^{2,2}(Ω) ∩ W^{1,p}_0(Ω)(W^{2,p}(R^n) ∩ W^{2,2}(R^n) for Cauchy problem), 2 ≤ p < ∞, we obtain the existence and uniqueness of global solution u(x, t) ∈ W^{1,∞}(0, T; W^{2,p}(Ω) ∩ W^{2,2}(Ω) ∩ W^{1,p}_0(Ω))(W^{1,∞}(0, T; W^{2,p}(R^n) ∩ W^{2,2} (R^n)) for Cauchy problem), so the results of [1] and [2] are generalized and improved in essential.
Haiping Mo and Yacheng Liu . (2001). Global W2,p Solutions of GBBM Equations on Unbounded Domain.
Journal of Partial Differential Equations. 14 (4).
349-355.
doi:
Copy to clipboard