- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Persistent Homoclinic Orbits for a Perturbed Cubic-quinitic Nonlinear Schrodinger Equation
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-15-6,
author = {Boling Guo and Hanlin Chen },
title = {Persistent Homoclinic Orbits for a Perturbed Cubic-quinitic Nonlinear Schrodinger Equation},
journal = {Journal of Partial Differential Equations},
year = {2002},
volume = {15},
number = {2},
pages = {6--36},
abstract = { In this paper, the existence of homoclinic orbits, for a perturbed cubic-quintic nonlinear Schrödinger equation with even periodic boundary conditions, under the generalized parameters conditions is established. More specifically, we combine geometric singular perturbation theory with Melnikov analysis and integrable theory to prove the persistence of homoclinic orbits.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5445.html}
}
TY - JOUR
T1 - Persistent Homoclinic Orbits for a Perturbed Cubic-quinitic Nonlinear Schrodinger Equation
AU - Boling Guo & Hanlin Chen
JO - Journal of Partial Differential Equations
VL - 2
SP - 6
EP - 36
PY - 2002
DA - 2002/05
SN - 15
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5445.html
KW - Homoclinic orbit
KW - perturbed cubic-quintic nonlinear Schrödinger equation
KW - geometric singular perturbation theory
KW - Melnikov analysis
AB - In this paper, the existence of homoclinic orbits, for a perturbed cubic-quintic nonlinear Schrödinger equation with even periodic boundary conditions, under the generalized parameters conditions is established. More specifically, we combine geometric singular perturbation theory with Melnikov analysis and integrable theory to prove the persistence of homoclinic orbits.
Boling Guo and Hanlin Chen . (2002). Persistent Homoclinic Orbits for a Perturbed Cubic-quinitic Nonlinear Schrodinger Equation.
Journal of Partial Differential Equations. 15 (2).
6-36.
doi:
Copy to clipboard