Volume 16, Issue 3
Continuous Dependence for a Backward Parabolic Problem

Jijun Liu

DOI:

J. Part. Diff. Eq., 16 (2003), pp. 211-222.

Published online: 2003-08

Preview Full PDF 0 401
Export citation
  • Abstract

We consider a backward parabolic problem arising in the description of the behavior of the toroidal part of the magenetic field in a dynamo problem. In our backward time problem, the media parameters are spatial distributed and the boundary conditions are of the Robin type. For this ill-posed problem, we prove that the solution depends continuously on the initial-time geometry.

  • Keywords

Parabolic equation inverse problem stability

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • References
  • Hide All
    View All

@Article{JPDE-16-211, author = {}, title = {Continuous Dependence for a Backward Parabolic Problem}, journal = {Journal of Partial Differential Equations}, year = {2003}, volume = {16}, number = {3}, pages = {211--222}, abstract = { We consider a backward parabolic problem arising in the description of the behavior of the toroidal part of the magenetic field in a dynamo problem. In our backward time problem, the media parameters are spatial distributed and the boundary conditions are of the Robin type. For this ill-posed problem, we prove that the solution depends continuously on the initial-time geometry.}, issn = {2079-732X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jpde/5420.html} }
Copy to clipboard
The citation has been copied to your clipboard