- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
The Existence and the Non-existence of Global Solutions of a Free Boundary Problem
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-17-152,
author = {Rong Yin and Wanghui Yu },
title = {The Existence and the Non-existence of Global Solutions of a Free Boundary Problem},
journal = {Journal of Partial Differential Equations},
year = {2004},
volume = {17},
number = {2},
pages = {152--162},
abstract = { We study a free boundary problem of parabolic equations with a positive parameter τ included in the coefficient of the derivative with respect to the time variable t. This problem arises from some reaction-diffusion system. We prove that, if τ is large enough, the solution exists for 0 < t < +∞ while, if τ is small enough, the solution exists only in finite time.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5383.html}
}
TY - JOUR
T1 - The Existence and the Non-existence of Global Solutions of a Free Boundary Problem
AU - Rong Yin & Wanghui Yu
JO - Journal of Partial Differential Equations
VL - 2
SP - 152
EP - 162
PY - 2004
DA - 2004/05
SN - 17
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5383.html
KW - Free boundary problem
KW - global solution
KW - existence
KW - non-existence
AB - We study a free boundary problem of parabolic equations with a positive parameter τ included in the coefficient of the derivative with respect to the time variable t. This problem arises from some reaction-diffusion system. We prove that, if τ is large enough, the solution exists for 0 < t < +∞ while, if τ is small enough, the solution exists only in finite time.
Rong Yin and Wanghui Yu . (2004). The Existence and the Non-existence of Global Solutions of a Free Boundary Problem.
Journal of Partial Differential Equations. 17 (2).
152-162.
doi:
Copy to clipboard