- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
We study the Dirichlet initial-boundary value problem of the general- ized Kuramoto-Sivashinsky equation u_t + u_{xxxx} + λu_{xx} + f(u)_ x = 0 on the interval [0, l]. The nonlinear function f satisfies the condition |f'(u)| ≤ c|u|^{α-1} for some α > 1. We prove that if λ < \frac{4π²}{l²}, then the strong solution is global and exponentially decays to zero for any initial datum u_0 ∈ H²_0 (0, l) if 1 ‹ α ≤ 7, and for small u_0 ∈ H²_0 (0, l) if α › 7. We then consider the equation u_t + u_{xxxx} + λu_{xx} + μu + au_{xxx} + bu_x = F(u, u_x, u_{xx}, u_{xxx}). We prove that if F is twice differentiable, ∇²F is Lipschitz continuous, and F(0) = ∇F(0) = 0, and if λ and μ satisfy μ + σ(λ) > 0 (σ(λ)=the first eigenvalue of the operator \frac{d^4}{dx^4} + λ\frac{d²}{dx²}), then the solution for small initial datum is global and exponentially decays to zero.
}, issn = {2079-732X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jpde/5353.html} }We study the Dirichlet initial-boundary value problem of the general- ized Kuramoto-Sivashinsky equation u_t + u_{xxxx} + λu_{xx} + f(u)_ x = 0 on the interval [0, l]. The nonlinear function f satisfies the condition |f'(u)| ≤ c|u|^{α-1} for some α > 1. We prove that if λ < \frac{4π²}{l²}, then the strong solution is global and exponentially decays to zero for any initial datum u_0 ∈ H²_0 (0, l) if 1 ‹ α ≤ 7, and for small u_0 ∈ H²_0 (0, l) if α › 7. We then consider the equation u_t + u_{xxxx} + λu_{xx} + μu + au_{xxx} + bu_x = F(u, u_x, u_{xx}, u_{xxx}). We prove that if F is twice differentiable, ∇²F is Lipschitz continuous, and F(0) = ∇F(0) = 0, and if λ and μ satisfy μ + σ(λ) > 0 (σ(λ)=the first eigenvalue of the operator \frac{d^4}{dx^4} + λ\frac{d²}{dx²}), then the solution for small initial datum is global and exponentially decays to zero.