- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Liouville Type Theorems of Semilinear Equations with Square Sum of Vector Fields
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-18-149,
author = {Yazhou Han , Xuebo Luo and Pengcheng Niu },
title = {Liouville Type Theorems of Semilinear Equations with Square Sum of Vector Fields},
journal = {Journal of Partial Differential Equations},
year = {2005},
volume = {18},
number = {2},
pages = {149--153},
abstract = { Let X_j ; j = 1, …, k, be first order smooth quasi-homogeneous vector fields on Rn with the property that the dimension of the Lie algebra generated by these vector fields is n at x = 0 and X^∗_j = -X_j, j = 1, …, k. Let L = \sum^k_{i=1} X²_i . In this paper, we study the nonnegative solutions of semilinear equation Lu + f(x, u) = 0 (or ≤ 0 ) in Rn and generalized cone domain, respectively, and prove that the solutions must be vanish under some suitable conditions.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5351.html}
}
TY - JOUR
T1 - Liouville Type Theorems of Semilinear Equations with Square Sum of Vector Fields
AU - Yazhou Han , Xuebo Luo & Pengcheng Niu
JO - Journal of Partial Differential Equations
VL - 2
SP - 149
EP - 153
PY - 2005
DA - 2005/05
SN - 18
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5351.html
KW - Liouville type theorem
KW - superlinear equation
KW - local Hörmander condition
KW - square sum operator
KW - generalized cone domain
AB - Let X_j ; j = 1, …, k, be first order smooth quasi-homogeneous vector fields on Rn with the property that the dimension of the Lie algebra generated by these vector fields is n at x = 0 and X^∗_j = -X_j, j = 1, …, k. Let L = \sum^k_{i=1} X²_i . In this paper, we study the nonnegative solutions of semilinear equation Lu + f(x, u) = 0 (or ≤ 0 ) in Rn and generalized cone domain, respectively, and prove that the solutions must be vanish under some suitable conditions.
Yazhou Han , Xuebo Luo and Pengcheng Niu . (2005). Liouville Type Theorems of Semilinear Equations with Square Sum of Vector Fields.
Journal of Partial Differential Equations. 18 (2).
149-153.
doi:
Copy to clipboard